پارس عمران

مرکز آموزش مهندسی عمران و معماری

پارس عمران

مرکز آموزش مهندسی عمران و معماری

ساختار کار پلها

این مقاله به بحث و بررسی پیرامون انواع پل ها و ساختارشان پرداخته است. شما در این مقاله با انواع پل های تیری، پل های قوسی، پلهای زیرقوسی و پل های معلق آشنا خواهید شد. به علاوه این که نیروهایی را که بر پلها تاثیر می گذارند را خواهید شناخت.

این مقاله با زبانی ساده و قابل فهم به بررسی پلها می پردازد. امید است مورد رضایت شما قرار گیرد. بدون شک تا به حال پلی را دیده اید و یا به احتمال زیاد از روی یکی از آنها عبور کرده اید. حتی اگر شما تخته یا کنده درخت را برای جلوگیری از خیس شدن خود بر روی آب قرار دهید در واقع شما یک پل ساخته اید. حقیقتاً پل ها در همه جا وجود دارند و در واقع یک بخش طبیعی وبدیهی از زندگی روزمره ی ما را تشکیل می دهند. یک پل مسیری را بر روی مانع ایجاد می کند که این موانع می تواند رودخانه، دره، جاده، خطوط راه آهن و ... باشد.در این مقاله ما سه نوع اصلی از پل ها را مورد مطالعه و بررسی قرار خواهیم داد که شما می توانید بفهمید که هرکدام چگونه کار می کنند. نوع پل بکار رفته در یک مکان به نوع مانع موجود در آنجا بستگی دارد. معیار اصلی در تعیین نوع پل وسعت و گستردگی آن مانع می باشد. چه مسافتی میان طرفین مانع وجود دارد؟ این مسئله، فاکتور اصلی در تعیین نوع پلی است که قرار است در آن محل احداث شود. با سپری شدن زمان و  مطالعه ای مقاله علت آن را متوجه خواهید شد. 

*** سه نوع اصلی از پلها موجودند:           پل تیری                   پل قوسی                      پل معلق

تفاوت عمده ی این سه پل در فاصله دهانه ی پل است. دهانه، فاصله ای است بین پایه های ابتدایی و انتهایی پل، اعم از اینکه آن ستون، دیوارهای دره یا پل باشد. طول پل تیری مدرن امروزه از  200  پا  (60متر) تجاوز نمی کند. در حالی که یک پل قوسی مدرن به  800  تا  1000  پا  (240  تا  300  متر) همو می رسد. پل معلق نیز تا  7000  پا طول دارد.چه عاملی سبب می شود که یک پل قوسی بتواند درازای بیشتری نسبت به پل تیری داشته باشد؟ و یا یک معلق بتواند تقریباً تا  7  برابر طول پل قوسی را داشته باشد. جواب این سوال زمانی بدست می آید که بدانیم چگونه انواع پلها از دو نیروی مهم فشاری و کششی تاثیر می پذیرند.

نیروی فشاری : نیرویی است که موجب فشرده شدن و یا کوتاه شدن چیزی که بر روی آن عمل می کند می شود.

نیروی کششی : نیرویی است که سبب افزایش طول و گسترش چیزی که بر روی آن عمل می کند، می گردد.

در این زمینه می توان از فنر به عنوان یک مثال ساده نام برد. زمانی که آن را روی زمین فشار می دهیم و یا دو انتهای آن را به هم نزدیک می کنیم، در واقع ما آن را را متراکم می سازیم. این نیروی تراکم یا فشاری موجب کوتاه شدن طول فنر می شود. و نیز اگر دو سر فنر را از یکدیگر دور سازیم، نیروی کششی در فنر ایجادشده، طولفنر را افزایش می دهد.نیروی فشاری و کششی در همه پل ها وجود دارند و وظیفه طراح پل این است که اجازه ندهد این نیروها موجب خمش و یا گسیختگی گردد. خمش زمانی اتفاق می افتد که نیروی فشاری بر توانایی شئ در مقابله با فشردگی غلبه کند. بهترین روش در موقع رویارویی با این نیروها خنثی سازی،پخش و یا انتقال آنهاست. پخش کردن نیرو یعنی گسترش دادن نیرو به منطقه وسیع تری است چنانکه هیچ تک نقطه مجبور به متحمل شدن بخش عمده ی نیروی متمرکز نباشد. انتقال نیرو به معنی حرکت نیرو از یک منطقه غیر مستحکم به منطقه مستحکم است، ناحیه ای که برای مقابله با نیرو طراحی شده و منظور گردیده است. یک پل قوسی مثال خوبی برای پراکندگی است حال آنکه پل معلق نمونه ای بارز از انتقال نیروست. 

پلهای تیری : یک پل تیری، اساساً یک سازه افقی مستحکم است که بر روی دو پایه نصب شده است و این پایه ها، هر یک در انتهای طرفین پل قرار دارند. وزن پل و هرگونه وزن اضافی دیگر که بر روی پل اعمال می شود، مستقیماً توسط پایه ها تحمل می شوند.

فشار : نیروی فشاری خود را در بالای عرشه پل یا جاده نمایان می سازد. این نیرو موجب می شود که بخش بالایی عرشه کوتاه- تر گردد.

کشش : برآیند نیرو فشاری در بخش بالایی عرشه به ایجاد نیروی کششی در بخش پایینی عرشه پل منجر می شود. این کشش موجب افزایش طول در بخش پایینی پل می شود.

پراکندگی : بسیاری از پلهای تیری که شما می توانید آنها را در بزرگراهها بیابید، برای تحمل بار  از تیرهای بتونی یا فولادی بهره می گیرند. اندازه تیر و بویژه ارتفاع تیر بر حسب مسافتی که تیر دارد محاسبه می شود.با افزایش ارتفاع تیر، به مقدار مصالح بیشتری برای پراکنده کردن کشش مورد نیاز است. طراحان پل برای ایجاد تیر های بلند از شبکه های فلزی یا خرپا بهره می گیرند. این خرپا به تیر استحکام داده و توانایی آن را در پخش کردن نیروی فشاری یا کششی افزایش می دهد. زمانی که تیر شروع به متراکم شدن می کند، این نیرو در میان خرپا پخش می شود. به غیر از خلاقیت موجود در خرپا، پل تیری در میزان طول خود محدود است. با افزایش طول آناندازه خرپا نیز می بایست افزایش یابد تا زمانی که خرپا به نقطه می رسد که دیگر نمی تواند وزن خود را تحمل کند.

 انواع پل های تیری : پل های تیری به سبک های بسیار زیادی ساخته  می شود. نوع طراحی، مکان و چگونگی ساخت یک خرپا، تعیین کننده نوع یک خرپاست. در بدو انقلاب صنعتی، احداث پلهای تیری در ایالات متحده با سرعت توسعه یافت. طراحان با طرحهای نوین و سازه های مختلف و متعدد این حرفه را رونق بخشیدند. پل های چوبی جای خود را به پلهای فلزی یا نیمه فلزی دادند. این نمونه های متنوع از خرپا ها گامهای موثری را در جهت پیشرفت در این زمینه برداشت. یکی از ابتدایی ترین و مشهور ترین آنها خرپای «هاو»1  بود که در سال  ١8٨۴   توسط «ویلیام هاو»2  طراحی و ابداع شد.شهرت ابداع جدید وی در طرح خرپایش نبود، چرا که مشابه طرح kingpost  بود. چگونگی استفاده از تیرهای آهنی عمودی با مجموعه ای از تیر های چوبی مورب  طرح او بود که مورد توجه قرار گرفت. بسیاری از پلهای تیری امروزه هنوز از طرح هاو در خرپایشان استفاده می کنند.

مقاومت خرپا  : یک تیر به تنهایی هرگونه فشردگی یا کشش را در بر خواهد گرفت. بیشترین فشردگی در بالاترین نقطه تیر و بیشترین کشش در در پایین ترین نقطه تیر است. در وسط تیر فشردگی و کشش کمتری وجود دارد.اگر تیر طوری طراحی شود که بیشترین مقدار مصالح در بالا و پایین تیر و در وسط تیر مصالح کمتری مصرف شود، بهتر خواهد توانست نیروهای کششی یا فشاری را تحمل کند. ( در توضیح می توانیم بگوییم که تیر های I  شکل مستحکم تر از تیر های مستطیلی ساده است).مرکز تیر از عضو های مورب خرپا تشکیل شده طوری که بالا و پایین خرپا نشان دهنده بالا و پایین تیر است. با نگرش به خرپا به این شیوه ما قادریم ببینیم که بالا و پایین تیر مصالح بیشتری نسبت به مرکز آن مصرف می کند(به این دلیل که مقوای چین دار خیلی مستحکم است).در اضافه به مطالب فوق در مورد تاثیرات خرپا، علت دیگری نیز وجود دارد دالّ براینکه چرا خرپا مستحکم تر از تیر است: یک خرپ توانایی پخش کردن نیرو را دارد. خرپا طوری طراحی شده است که به دلیل داشتن تعداد زیادی از مثلث ها _که به طور معمول در آن مورد استفاده قرار می گیرد_ هم می تواند یک سازه بسیار مستحکم ایجاد کند و هم کار انتقال نیرو را از یک نقطه به منطقه وسیعی انجام دهد.

 پل قوسی : یک پل قوسی سازه ای است به شکل نیم دایره که در هر طرف آن نیم پایه  (پایه های جناحی) قرار دارد. طراحی قوس طوری است که به طور طبیعی وزن عرشه پل را به نیم پایه ها منتقل و منعطف می کند.

فشار : پلهای قوسی همواره تحت فشار قرار گرفته اند. نیروی فشاری همواره در امتداد قوس و به سمت نیم پایه ها وارد می شود.

کشش : کشش در یک قوس ناچیز و قابل اغماض است. خاصیت طبیعی خمیدگی قوس و توانایی ان در پخش نیرو به بیرون، به طور قابل ملاحظه ای  تاثیرات کشش را در قسمت زیرین قمس کاهش می دهد. هرچند با زیاد شدن زاویه ی خمیدگی ( بزرگتر شدن نیمدایره قوس) تاثیرات نیروی کششی نیز در آن افزایش می یابد.همانطور که اشاره شد، شکل قوس به تنهایی موجب می شود که وزن مرکز عرشه پل به پایه های جناحی منتقل شود. مشابه پلهای تیری محدوده ی اندازه پل در مقاومت پل تاثیر گذاشته و در نهایت بر ان چیره خواهد گشت.

 

 انواع پلهای قوسی

پراکندگی : انواع قوس ها محدود هستند. امروزه قوس هایی مانند «رمان»3  ، «باروک»۴  و «رنسانس»۵  وجود دارند که همه آنها از نظر معماری و ظاهری متمایز هستند ولی از نظر ساختار یکسانند. میزان مقاومت این پلها به شکل هندسی آنه بستگی دارد. یک پل قوسی احتیاج به هیچگونه تکیه گاه یا کابل ندارد. و قوسهایی که از سنگ ساخته شده است حتی نیازی به ساروج یا ملاط نیز ندارد. در گذشته نیز رومیان باستان پلهای قوسی (پل آب بر) ساخته اند که هنوز هم پابرجا هستند و سازه های آنه امروزه نیز با اهمیت به شمار می آید.

پل معلق : پل معلق پلی است که توسط کابل ها (یا ریسمانها یا زنجیرها) در عرض رودخانه (یا در هر جایی که مانع وجود داشته باشد) کشیده شده اند و عرشه توسط این کابل ها معلق مانده است. پل های معلق مدرن دو برج در میان پل دارند که کابل ها آن را می کشند. بنابراین برج ها بیشترین وزن جاده را تحمل می کنند.

نیروی فشاری : نیروی فشاری عرشه پل معلق را به سمت پایین متراکم می سازد در نتیجه این نیروی فشاری به برجها وارد می آیند. اما از آنجا که این یک پل معلق است، کابلها این نیروی فشاری را از برجها گرفته و آن را در بین خود پراکنده می کنند. و آن را به زمین منتقل می کنند، جایی که آنها محکم بسته شدند.

کشش : کابلهایی که میان دو لنگرگاه خود یعنی تکیه گاهها قرار گرفته اند، دریافت کننده نیروی کششی هستند. وزن پل و حمل و نقل روی آن سبب می شود که این کابل ها به شدت کشیده شوند. تکیه گاهها نیز تحت کشش هستند ولی از آنجا که همانند برجها، محکم به زمین بسته شده اند، کشش موجود در آنها پراکنده می شود. تقریباً همه پلهای معلق به غیر از کابل ها از یک سامانه خرپا نیز بر خوردارند که در زیر عرشه پل قرار گرفته است (Deck truss). این سامانه موجب استحکام بیشتر عرشه و کاهش تمایل سطح جاده به نوسان و مواج شدن می شود.

انواع پلهای معلق : پلهای معلق به دو شکل طراحی می شوند: پل معلقی که به شکل M  است و نوع کم کاربردتری که به صورت «کابل ایستاده»6  طراحی شده که بیشتر شبیه A  است. پلهای کابل ایستاده دیگر مانند پلهای معلق معمولی  نیازی به دو برج و چهار تکیه گاه ندارند. در عوض کابلها از سمت جاده به بالای برج محکم بسته شده اند. در هر دو نوع پل، کابلها تحت کشش هستند.

نیروهای دیگر در پل : ما در مورد دو نیروی بزرگ و مهم فشاری و کششی در طراحی پل بسیار صحبت کردیم. تعداد بسیار زیاد دیگری از نیروها در پل وجود دارند که در طراحی پل باید مد نظر قرار گرفته شوند. این نیرها معمولاً به محل مشخصی بستگی داشته و یا به نوع پل مرتبط است.

نیروی گشتاوری : نیروی گشتاوری نیروی چرخشی یا پیچشی و یکی از نیروهایی است که به طور موثر در پلهای قوسی و تیری وجود ندارد ولی به میزان قابل ملاحظه ای در پلهای معلق وجود دارد. شکل طبیعی قوس و خرپاهای موجود در پلهای تیری اثرات مخرب این نیرو را از بین می برد. پلهای معلق به دلیل معلق بودن در هموا (توسط کابلها) در برابر این نیروی گشتاوری بخصوص در هنگام وزش بادهای تند بسیار اسیب پذیر است.همه ی پلهای معلق در عرشه ی خود از خرپا ها بهره می برند که همانند پلهای تیری تاثیرات نیروی گشتاوری را کاهش می دهد ولی در پلهایی با طول زیاد، خرپای موجود در عرشه به تنهایی کافی نیست. آزمون « تونل باد»7  برای سنجش میزان مقاومت پل در برابر جنبش های چرخشی بر روی مدل آزمایش می شود. ایجاد خرپاهای آیرودینامیک در سازه هاو کابلهای آویزان مورب از روش هایی هستند که برای تقلیل تاثیرات نیروهای گشتاوری به خدمت گرفته می شود.

تشدید : تشدید ( ارتعاش در چیزی که توسط نیروی خارجی به وجود آمده و با ارتعاش طبیعی اصل آن چیز، هماهنگ و هم موج است) نوعی نیرویی است، افسار گسیخته که می تواند بر روی پل اثرات مخربی بگذارد. امواج تشدید کننده از میان پل به صورت امواج عبور خواهد کرد. یک نمونه مشهور از قدرت تخریب این امواج مرتعش پل «تاکوما ناروز»8  است که در سال  1940  توسط بادی با سرعت  40  مایل در ساعت  (64  کیلومتر در ساعت) تخریب شد. بررسی های دقیق از محل نشان می دهد که خرپای عرشه ناکارآمد بوده ولی با این حال عامل اصلی فرو ریزی پل نبوده. در آن روز باد با سرعت به پل ضربه زده و با برخورد قائم به پل باعث ایجاد ارتعاش شده است. این باد های متوالی لرزش و ارتعاش را افزایش داده تا آنجا که این امواج توانستند پل را فرو ریزند. زمانی که یک ارتش بر روی پل رژه می رود، اغلب به سربازان گفته می شود " قدمرو" . با این کار، ریتم رژه ی آنها سبب ایجاد تشدید در پل می شود. اگر ارتش به اندازه کافی بزرگ باشد و آهنگ ارتعاشی لازم را داشته باشد در نهایت می تواند پل را فرو پاشد.به منظور مقابله با تاثیرات تشدید در یک پل، خیلی مهم است که در پل کاهندهای امواجی طراحی شود تا در این امواج تداخل ایجاد کرده و از شدت آن بکاهد. ایجاد تداخل یک روش موثر در برابر امواج مخرب می باشد. تکنیک های کاهش امواج معمولاً شامل اینرسی نیز هستند. اگر پلی، به عنوان مثال یک جاده با سطح پیوسته و یک تکه داشته باشد، یک موج قوی می تواند در امتداد پل حرکت کرده و منتقل شود. اگر جاده از تکه های مختلفی تشکیل شده باشد و صفحات آن همدیگر را همپوشانی کرده باشند آنگاه جنبش از یک بخش توسط صفحات به بخش دیگر منتقل می شود. از آنجا که آن صفحات بر روی یکدیگر قرار گرفته اند، اصطکاک نیز ایجاد می شود. این ترفند، اصطکاک کافی را برای تغییر فرکانس امواج مرتعش را تولید می کند. با تغییر فرکانس می توانیم از ورود امواج مخرب به سازه جلوگیری کنیم. تغییر بسامد به طرزی موثر دو نوع مختلف از موج را به وجود می آورد که موجب خنثی شدن یکدیگر می شوند.

آب و هوا : نیروی طبیعت به ویژه آب و هوا به گونه ایست که مبارزه با آن مشکل و حتی در برخی موارد امکان پذیر نیست. باران، یخبندان، طوفان و نمک هر کدام به تنهایی می توانند در فرو پاشی پل نقش بسزایی داشته و تحت یک مجموعه به احتمال بسیار قوی خواهند توانست پل را تخریب کنند. طراحان پل با مطالعه و بررسی شکست های گذشته حرفه ی خود را بدرستی آموخته اند. آنان آهن را به چوب عوض کردند و سپس فولاد را جایگزین آهن کردند. بعد ها از بتون بطور گسترده در پلها بهره گرفتند. هر کدام از مواد و مصالح جدید و یا تکنیک های طراحی، ثمره درسهایی است که در گذشته آموخته اند. با دانستن نیروی گشتاوری، تشدید و آیرودینامیک    ( بعد از چند شکست بزرگ ) طراحی های بهتر نیز شکل گرفت.تا آنجاکه توانستند بر مسئله آب و هوا غلبه کنند. تعداد شکست های مرتبط با آب و هوا و شرایط جوی بسیار فراتر از تعداد شکست ها در زمینه طراحی بوده است. این شکست ها به ما آموخته است که همواره به دنبال راه حلبهتری باشیم.

مشهور ترین پل های جهان

مشخصات چند پل مشهور جهان( به نقل ازsajjad8103.blogfa.com)

پل ها، یکی از سازه های مهم دنیا به شمار می روند. در این مطلب، مشخصات چند پل مشهور جهان را می خوانید.

Vasco da Gama.jpg

پل واسکودوگاما که از روی دهانه رود تاگوس بین ساکاوم و مونیجو در نزدیکی لیسبون، پرتقال می گذرد، با حدود 17200 متر طول، یکی از بلندترین پل های کابلی در اروپا به شمار می رود. این پل توسط آرماندو ریتو و با همکاری میشل ویرلوگو (که طراحی و ساخت پل میلاو را هم به عهده داشته است)، طراحی شده است. پل واسکودوگاما رسماً در 29 ماه مارس 1998 تنها کمی قبل از افتتاح نمایشگاه بین المللی اکسپو 98 و 500 سال پس از اکتشاف واسکودوگاما در راه اروپا به هند افتتاح گردید. این پل برای تحمل زلزله ای چهار برابر زلزله سال 1755 لیسبون که 7/8 ریشتر برآورد شده بود طراحی شده است. بلندترین دهانه آن 450 متر است و انتظار می رود 120 سال عمر کند. به خاطر طول زیادش، انحنا زمین نیز در نظر گرفته شده است تا پایه های آن بتوانند در محل صحیح خود قرار بگیرند.

Ponte Vittorio Emanuele II.jpg

پل ویکتور امانوئل II (Ponte Vittorio Emanuele II) که بر روی رود تایبر در رم، ایتالیا، ساخته شده، از انواع پل های قوسی است که در تاریخ 5 ژوئن 1911، در سالگرد اتحاد ایتالیا افتتاح گردید و به نام اولین شاه ایتالیا که با انضمام ونیز در سال 1866 و رم در سال 1870 به ایتالیا اتحاد این کشور را تکمیل نمود، نامگذاری شده است. این پل توسط انیو د روسی طراحی گردیده است. پل سنگی سه قوسی، چهار ستون – دو ستون در هر سمت - را به هم متصل می نماید و چهار مجسمه مرمر روی ستونهای قوس میانی، به نشانه اتحاد ایتالیا، آزادی، شکست ظلم و بیداد و وفاداری به قانون اساسی قرار گرفته اند. این پل توسعه طبیعی معماری کرسو ویتورو در رم می باشد.

Pont Laviolette.jpg

پل لاویولت (The Pont Laviolette) به افتخار موسس شهر تریوس-ریویرس - سیور د لاویولت - نامگذاری شده است. این پل یک پل ماشین رو با قوس کانتیلور (طره ای) است که بر روی رودخانه سنت لارنس بین تریوس-ریویرس در کبک، کانادا و بکن کور در کبک ساخته شده است. پل پونت لاویولت که در تاریخ 20 دسامبر 1967 افتتاح گردید، تنها پلی است که بر روی رودخانه بین مونت رئال و شهر کبک قرار دارد و بنابراین ارتباط مهمی را بین سواحل شمالی و جنوبی رودخانه فراهم می سازد. طول کل آن 2707 متر و بزرگترین دهانه آن 335 متر می باشد. پل فلزی مذکور دچار خوردگی نمی شود زیرا در فولاد بکار رفته در آن از عنصر نیوبیوم استفاده شده است.

Pont de Pierre.jpg

پل سنگی پونت د پیر پلی است قوسی، سنگی و ماشین رو، که روی رودخانه گارون در بوردو فرانسه قرار دارد. این پل بین سالهای 1819 و 1822 توسط کلود د شامپ و با همکاری جین-بپتیست بیلادل طراحی و ساخته شد. پل مذکور به دستور ناپلئون – در سال 1810 – و به منظور تسهیل رفت و آمد ارتشش از رودخانه بوردو در طول جنگ با اسپانیا، پرتقال و انگلیس ساخته شد. در سال 1811 مهندس کلود د شامپ وارد بوردو شد اما تا سال 1812 به عنوان مدیر پروژه ساخت پل معرفی نگردید. پروژه در سال 1814 با سقوط امپراطوری فرانسه و کناره گیری ناپلئون از قدرت، متوقف و تا 5 سال بعد، اجرای آن از سر گرفته نشد. پونت د پیر 487 متر طول دارد و دارای 17 دهانه است.

Glen Canyon Bridge.jpg

پل گلن کانیون در تقارن با سد گلن کانیون که بر روی رودخانه کلرادو و بر دهانه دریاچه پاول در نزدیکی پیج در آریزونا ساخته شده، برای ایجاد دسترسی ماشینی به هر دو ساحل رودخانه و تسهیل رفت و آمد کارکنان سد بین سالهای 1957 تا 1959 بنا گردید. این پل که توسط شرکت کیویت-جادسون پاسیفیک مورفی ساخته شد، در زمان بهره برداری در 9 فوریه 1959 بلندترین پل قوسی فلزی در جهان بود. طول عرشه پل مذکور 4/387 متر، دهانه قوس آن 313.3 متر، ارتفاع عمودی قوس آن 3/50 متر بوده و 213 متر از سطح رودخانه ارتفاع دارد.

Queensboro Bridge.jpg

پل کوئینز بورو – یا پل خیابان پنجاه و نهم – یک پل دو طبقه طره ای (کانتیلور) است که از روی رودخانه شرقی نیویورک سیتی می گذرد و منهتن را به دهکده کوئینز در لانگ آیلند سیتی را به هم متصل می کند. این پل همچنین از روی جزیره روزولت می گذرد. از سال 1838 پیشنهادات زیادی جهت ساخت پل برای اتصال منهتن به لانگ آیلند سیتی در دهکده کوئینز ارائه شد اما تا زمانی که اداره پل ها در این شهر تاسیس نشد، هیچکدام از طرحها مورد قبول واقع نشدند. پل فوق الذکر که در تاریخ 30 مارس 1909 افتتاح گردید – و در ابتدا به خاطر نام اولیه جزیره روزولت به نام پل جزیره بلک ول خوانده می شد – 08/1135 متر طول دارد و بزرگترین پل طره ای در جهان شناخته شده است.

Ohnaruto Bridge.jpg

پل اوناروتو پل معلق ماشین روئی است که کوبه را به ناروتو، توکوشیما در ژاپن متصل می سازد. پل مذکور که توسط هونشو-شیکوکو طراحی و در سال 1985 ساخته شده است، دارای دهانه اصلی به عرض 876 متر می باشد و اگرچه یکی از بزرگترین پل های جهان است، در مقابل پل آکاشی-کیاکو که بر روی همین مسیر ساخته شده، بسیار کوچک به نظر می رسد. عرشه اصلی این پل برای رفت و آمد اتومبیل ها و عرشه پائینی برای حرکت قطار در نظر گرفته شده بود اما راه قطار رو هرگز به اتمام نرسید.

Hernando De Soto.jpg

پل هرناندو د سوتو که در سال 1972 مورد بهره برداری قرار گرفت، یکی از دو پلی است که از روی رودخانه می سی سی پی در ممفیس، تنسی می گذرد. این پل قوسی فلزی ماشین رو، یک راه ارتباطی مهم است که 40 راه بین ایالتی را بر روی می سی سی پی به هم متصل می سازد. از آنجا که پل مذکور در گوشه جنوب شرقی منطقه زلزله خیز نیو مادرید – که یک منطقه زلزله خیز با ریسک بالا می باشد - قرار دارد، مقاوم سازی آن در برابر زلزله، به عنوان یکی از اولویتهای مهم در دستور کار اداره کل راههای فدرال آمریکا، اداره ترابری تنسی و اداره ترابری آرکانزاس قرار گرفت و در سال 2003 نیروهای مشترکی بکار گرفته شدند تا طرح بهنگام زلزله ای این پل را تهیه نمایند. این طرح عبارت بود از تعویض تکیه گاههای موجود با تکیه گاههای غلتکی، مقاوم سازی شالوده ها و ستونها، بزرگتر کردن سر ستونها، اصلاح دیواره جان، تعویض یا مقاوم سازی بادبندهای جانبی، مقاوم سازی قابهای متقاطع، مقاوم سازی خرپاها و جابجائی درزهای موجود با درزهای انبساطی مفصل گردان مدولی.

Detroit Superior Bridge.jpg

پل دیترویت علیا که از رودخانه کویاهوگا گذشته و پائین شهر کلولند در اوهایو را به گوشه غربی شهر متصل می نماید، در زمان افتتاحش در سال 1918 بزرگترین پل دو طبقه بتنی در دنیا بود. این پل دارای دهانهای به عرض 5/948 متر در دو طبقه است برای اصلاح ترافیک شهری در طبقه بالا و تراموای شهری در طبقه پائین و همینطور ایجاد پیاده روهای عریض طراحی گردید. بعد ها، طرح تعریض خیابان باعث کاهش عرض پیاده رو ها گردید اما در سال 2003 کمیته برنامه ریزی شهر کلولند تصمیم گرفت یکی از لاین های پل را تبدیل به یک پارک معلق نماید که در آن گردشگاههای پیاده، صندلی های دارای سر پناه و لاین های مخصوص دوچرخه سوار پیش بینی شده بود. تیم طراحی تشکیل شده بود از تیم معماری شهری، پارسونز برینکرهوف و کمیته هنرهای همگانی.

Fort Pitt Bridge.jpg

پل فورت پیت که از رودخانه مونونگاهلا می گذرد و در تقارن با تونل فورت پیت ساخته شده است، دروازه پیتز بورگ نام گرفته است. پل مذکور از نوع قوسی فلزی بوده و 9/367 متر طول دارد و طول دهانه اصلی آن 6/228 متر می باشد. این پل که در تاریخ 19 ژوئن 1959 به بهره برداری رسید، توسط جورج اس ریچاردسون طراحی و ساخته شده است. پل و تونل اخیراً توسط گروهی از کارشناسان انتخابی توسط HDR مورد بازسازی و ترمیم قرار گرفت و این عملیات در سال 2003 به پایان رسید. یکی از مهم ترین اجزاء بازسازی پل، الحاق حصار جدید پنسیلوانیا بود. حصاری باز تر که امکان دید وسیع تر و جالب تری را به افرادی که از روی پل عبور می کنند، می دهد.


پل کابلی

تاریخچه پل کابلی

با اینکه به نظر می رسد پل های کابلی به آینده چشم دوخته اند، ایده آن ها مسیر طولانی را پیموده است. اولین طرح شناخته شده از یک پل کابلی در کتابی به نام "ماشین های نووا" - منتشر شده در سال 1595 - آورده شده ولی این ایده تا قرن حاضر که مهندسان شروع به استفاده از پل های کابلی نمودند؛ مورد استقبال واقع نشده بود. در جنگ جهانی دوم که فولاد کمیاب بود، این طرح برای بازسازی پل های بمباران شد که هنوز فوندانسیون هایشان پابرجاست، کامل بود. با اینکه از احداث پل های کابلی در آمریکا دیری نمی گذرد، واکنش ها در این مورد بسیار مثبت بوده است.

 

پل کابلی و نحوه عملکرد آن

یک پل کابلی نوعی، یک تیر حمال(عرشه پل) پیوسته با یک یا چند برج بنا شده بالای پایه های پل در وسط دهانه است. از این برج ها، کابل ها به صورت اریب به سمت پایین (معمولا هر دو طرف) کشیده شده و تیر حمال(عرشه پل) را نگه می دارد.

کابل های فولادی بی نهایت قوی و در عین حال بسیار انعطاف پذیر هستند. کابل ها بسیار مقرون به صرفه می باشند چون سبب ساخت سازه ای سبکتر و باریکتر شده که در عین حال قادر به پل زدن بین مصافت های بیشتری است.اگرچه تنها تعداد کمی از آن ها برای نگه داشتن کل پل قوی هستند، انعطاف پذیریشان آن ها را در مقابل نیرو هایی که به ندرت در نظر گرفته می شوند مانند باد؛ ضعیف می نماید.

برای پل های کابلی با دهانه های طولانی به خاطر تضمین ثبات و پایداری کابل ها و پل در مقابل باد، می بایست مطالعات دقیقی انجام شود. وزن سبکتر پل یک وضع نامساعد در بادهای سهمگین و یک مزیت در مقابل زلزله محسوب می شود. نشست غیر هم سطح فوندانسیون ها که به مرور زمان یا  طی یک زلزله روی می دهد، می تواند پل کابلی را دچار آسیب کند. پس باید در طراحی فوندانسیون ها دقت به عمل آورد.

ظاهر مدرن و در عین حال ساده پل کابلی آن را به یک شاخص واضح و جذاب تبدیل کرده است. خصوصیات منحصر به فرد کابل ها و به طور کلی سازه، طراحی پل را بسیار پیچیده مینماید. برای دهانه های طولانی تر، جایی که باد و نوسانات باید مورد توجه قرار گیرند؛ محاسبات بی نهایت پیچیده اند و عملا بدون کمک کامپیوتر و آنالیز کامپیوتری غیر ممکن می باشند. علاوه بر این ساخت پل کیده ای مشکل می باشد. اتصالات، برج ها، تیر های حمال و مسیر کابل ها سازه های پیچیده ای هستند که مستلزم ساخت دقیق می باشند.

 

طبقه بندی پل های کابلی

طبقه بندی واضحی برای پل های کابلی وجود ندارد. به هر حال آن ها می توانند توسط تعداد دهانه ها، برج ها و کابل ها و همچنین نوع تیر های حمال از یکدیگر تمیز داده شوند.

تنوع بسیاری در تعداد و نوع برج ها و همچنین تعداد و چینش کابل ها وجود دارد. برج های نوعی به صورت تکی، دوتایی، دروازه ای و یا حتی برج های A شکل استفاده شده اند.

 علاوه بر این چینش کابل ها به طور عمده ای متفاوت می باشند. بعضی اقسام دارای چینش تکی، چنگی(موازی)، پنکه ای(شعاعی) و ستاره ای هستند. در بعضی موارد تنها کابل های یک طرف برج به عرشه وصل می شوند و طرف دیگر روی یک فندانسیون یا وزنه برابری لنگر می اندازند.

 

مزایای و تفاوت های پل کابلی  

برای طول متوسط دهانه ها (150 تا 850 متر) پل کابلی سریعترین انتخاب مناسب برای یک پل می باشد. نتیجه یک پل مقرون به صرفه است که زیبایی آن غیر قابل انکار است. همچنین پل کابلی بهترین پل برای طول دهانه بین پلهای بازویی و معلق می باشد. در این محدوده طول دهانه، یک پل معلق مقدار بسیار بیشتری کابل نیاز خواهد داشت و این در حالی است که یک پل بازویی کامل، به طور قابل ملاحضه ای به مصالح بیشتر نیاز دارد که آن را به مقدار چشمگیری سنگین تر می نماید.

ممکن است به نظر برسد پل کابلی شبیه پل معلق است. با اینکه هر دو دارای عرشه هستند که از کابل ها آویزانند و هر دو دارای برج هستند؛ ولی این دو پل بار عرشه را به طرق بسیار متفاوتی نگه می دارند. این اختلافات در چگونگی اتصال کابل ها به برج می باشد. در پل معلق کابل ها آزادانه از این سر تا آن سر دو برج کشیده شده اند و انتقال بار به تکیه گاه های واقع در هر انتها صورت می گیرد. در پل کابلی، کابل ها در حالی که به برج ها متصلند به تنهایی بار را تحمل می کنند. در مقایسه با پل های معلق، پل کابلی به کابل کمتری نیاز دارد، می توان آن را از قطعات بتن پیش ساخته مشابه ساخت و همچنین احداث آن سریع تر است.

مهار کابلی چگونه کار می کند؟

بایستید و دستان خود را به صورت افقی در هر طرف دراز کنید. فرض کنید آن ها پل هستند و سرتان نیز برجی در وسط آن است. در این موقعیت ماهیچه های شما دستانتان را نگاه می دارد. سعی کنید یک مهار کابلی برای نگه داشتن دستانتان بسازید. یک تکه طناب به طول حدودی 150 سانتیمتر بردارید. از یک دستیار بخواهید هر یک از دو انتهای طناب را به هر یک از آرنج هایتان ببندد. سپس وسط طناب را روی سر خود قرار دهید. اینک طناب مانند یک مهار کابلی عمل می کند و آرنج هایتان را بالا نگه می دارد. از دستیارتان بخواهید تکه طناب دیگری به طول حدودی 180 سانتی متر را این بار به مچهایتان ببندد. طناب دوم را روی سرتا ن قرار دهید. حالا شما صاحب دو مهار کابلی هستید. فشردگی و فشار نیرو را در کجا احساس می کنید؟ ببینید مهار کابلی چگونه بار پل (دست هایتان) را به برج ( سر شما) منتقل می کند!

 

تصاویری از تونل متروی لندن بعد از نیمه شب

Maintenance staff inspect some of the 250 miles (400km) of track running under the capital


Going Underground
Maintenance staff inspect some of the ۲۵۰ miles (۴۰۰km) of track running under the capital.

 London has the longest metro system in the world by route length.

 

London's Tube After Midnight

At Pimlico, cleaning staff prepare to leave a station to clean a tunnel
Walk the Line

The network has ۲۶۸ stations. At Pimlico, cleaning staff prepare to leave a station to clean a tunnel.

 Cleaning the dirt and debris under the track

Working Man
The dirt and debris under the track gets cleaned. In ۲۰۰۷, over one billion passenger journeys were recorded.

 

 

Preparing tracks for welding

Let's Work Together

Preparing the tracks for welding. Maintenance is constant to ensure the smooth running of the system.

 

Recently welded track joints are cooled with water
Hot Water

Recently welded track joints are cooled with water.

 The first line (named the Metropolitan Line) opened in January ۱۸۶۳. Within a few months of opening it was carrying over ۲۶,۰۰۰ passengers a day.

In the Air Tonight

Usually referred to as the Underground or the Tube —
 the latter deriving from the shape of the system's deep-bore tunnels — about ۵۵% of the network is above ground.

 

Workers arrive at Victoria Underground

Night Shift

Staff arrive at Victoria's underground station.
A vast army work through the night so as to avoid minimum disruption to passenger services.

 

 

A worker cleans the ceramic insulator pots under the live rail at Pimlico Underground Station
Work to Make it Work

A worker cleans the ceramic insulator pots under the live rail at Pimlico.

The London Tube was the first underground railway to operate electric trains.

 

A cleaner displays the tools of his trade


Hard Days Night

It's a dirty job ... A cleaner displays the tools of his trade

پروژه تونل SMART ( کوالالامپور - مالزی )

پروژه تونل SMART  ( کوالالامپور - مالزی )

Stormwater Management and Road Tunnel

:: اسمارت درخشش مهندسی در اعماق زمین

        تونل SMART اولین تونل دو منظوره جهان است که در شهر کوالالامپور پایتخت کشور مالزی ساخته شده است. ساخت این تونل از سال 2003 شروع و در ژوئن 2007 بهره‌برداری از آن آغاز شده است . این تونل ابتدا بعنوان مسیری برای انحراف آب‌های خروشان و سیلاب‌های رودخانه‌ای که از به‌ هم پیوستن دو رودخانه بزرگ در مرکز شهر حاصل شده است ، در نظر گرفته شده بود. ولی سپس با یک ایده جالب و خلاق و با در نظرگرفتن قطر داخلی 8/11 متر، تونل به گونه‌ای طراحی شد که بتواند در زمان‌های غیراضطراری که جریان آب چندان قوی نیست بعنوان تونلی رفت و آمدی ( در دو طبقه ) برای وسایل نقلیه جهت کم‌کردن بار ترافیکی یکی از شاهراه‌های مهم و شلوغ شهر مورد استفاده قرار بگیرد .

 

 :: بهره‌برداری از این تونل در سه حالت می‌تواند انجام بگیرد :

     حالت اول (حالت عادی یا نرمال) : زمانی است که جریان آب رودخانه به قدری کم است که اساساً نیازی به انحراف توسط تونل ندارد .
      حالت دوم : زمانی است که طوفان‌های کوچک یا متوسط رخ می‌دهد ولی فشار جریان آب زیاد نیست . در چنین حالتی جریان آب به داخل تونل منحرف شده و از طریق مسیر فرعی به پایین‌ترین قسمت تونل هدایت می‌شود. در این حالت دو مسیر عبور و مرور بالایی تونل همچنان بر روی وسایل نقلیه باز است .
      حالت سوم : حالتی است که در زمان طوفان‌های سهمگین رخ می‌دهد . در چنین حالتی کل تونل بر روی وسایل نقلیه بسته می‌شود و پس از اطمینان از خارج‌شدن کلیه ماشین‌ها ( به‌وسیله تعداد زیادی ایستگا‌ه‌های رفتارسنجی تا زمانی که یک وسیله نقلیه در داخل تونل باشد درهای و
رودی آب باز نمی‌گردد . ) جریان سیلاب به‌طور خودکار به داخل تونل هدایت می‌شود . ظرفیت آب در تونل در چنین حالتی به سه میلیون مترمکعب می‌رسد .

      :: روش ساخت تونل


          شهر کوالالامپور از نظر زمین‌شناسی بر بستری از آهک قرار گرفته است . ضمناً این شهر از سطح دریا نیز بالاتر است . از مشخصه‌های اصلی این لایه‌های آهکی وجود تخته‌سنگ‌ها ، گودال‌ها و باتلاق‌های متفاوت است. با توجه به طبیعت زمین‌شناسی شهر بیشتر ایده‌های طراحی و اجرا به سمت و سویی میل کرده است که کمترین اثر منفی را بر روی شرایط محیطی و زمین‌شناسی شهر وارد نماید .
لذا برای این پروژه از ماشین   TBM مدل   Slurry Shield  استفاده شده است که به هنگام کار در برخورد با بسترهای آهکی و مواجهه با آب‌های زیرزمینی و صخره‌های سخت مقاومت خوبی از خود نشان می‌دهد. وجود یک سپر مقاوم که با فشار هوا کار می‌کند امکان آن را فراهم می‌سازد که ماشین در مواجهه با آب‌های زیرزمینی و خاک‌های سست تعادل خود را کاملاً حفظ نماید .

              :: ایمنی تونل


           از نظر استاندارد های امنیتی و ایمنی نیز اسمارت از وضعیت خیلی خوبی برخوردار است . خروجی‌های اضطراری فراوان‌، سازه ضد زلزله، صدها دوربین و وجود مرکز کنترل که شبانه‌روز تردد خودروها و عبور جریان آب را زیر نظر دارند اسمارت را در این زمینه نیز بی همتا کرده است.

          تونل SMART برای دستگاه‌های تهویه ویژه‌ای است که در هر کیلومتر از تونل تعبیه شده است. این دستگاه‌های قوی تهویه بطور دائم هوای ‌آلوده تونل را خارج می‌نماید.

تکنولوژی اجراء در سد خاکی با هسته رسی

مقدمه :
پس از انتخاب پیمانکار و دریافت اطلاعات کاملی از پروژه اولین گام، تحویل زمین با حضور نمایندگان کارفرما ، نظارت مقیم و پیمانکار می باشد که بین آنها صورتجلسه می‌شود . پس از آن پیمانکار برنامه زمانبندی خود را با توجه به شرایط پروژه وامکانات خود به دستگاه نظارت ارائه می دهد .

در قدم اول پیمانکار باید به بررسی وشروع عملیات اجرایی راههای دسترسی اقدام نماید. روش کار به این طریق است که نقشه‌های جزئیات را پیمانکار براساس نقشه‌های اصلی مشاور و برداشتهای نقشه‌برداری تهیه و به دستگاه نظارت جهت تایید ارسال می شود. احداث راههای دسترسی باید به نحوی باشد که محل جاده‌ها در طول اجرای کل پروژه تغییر نکند چون دوباره کاری است و هزینه اضافی را موجب می شود حتی الامکان بهتر است جاده‌ها یکطرفه باشند تا به این وسیله تصادفات کمتر شود.

بولدوزر ، لودر ، گریدر ، غلطک و تراک میکسر از معمول ترین ماشین آلات راهسازی هستند که بکارگیری می شوند. با توجه به شرایط پروژه ، توپوگرافی و جنس زمین در صورت نیاز باید از ماشین آلات دیگری مانند بیل مکانیکی ، Jack hammer یا پیکور ، دریل واگن وغیره استفاده کرد .

در طول اجرای پروژه اگر پیمانکار هنگام اجرا به مواردی برخورد نماید که در نقشه‌ها دیده نشده باشد، موارد را به اطلاع دستگاه نظارت مقیم رسانده و درخصوص نحوه اجرای هماهنگی لازم صورت می‌گیرد و با نظارت صورتجلسه می‌شود .

نحوه پرداخت هزینه پروژه به این صورت است که پیمانکار صورت وضعیت ماهانه را تنظیم وبه دستگاه نظارت تحویل می دهد و دستگاه نظارت پس از بررسی اعلام نظر می نماید. پیمانکار نیز نظرات خود را به همراه مدارک مستند مانند صورتجلسات، برداشتهای نقشه‌برداری وغیره ارائه نموده نتیجه به کارفرمای طرح ارائه می شود .

تجهیز کارگاه :

در پروژه‌های بزرگ تجهیز کارگاه، خود پروژه‌ای محسوب می شود. در مرحله تجهیز کارگاه از اولین کارها احداث کانکس‌های موقت است. احداث اتاقک نگهبانی وفنس کشی دور محوطه پیمانکار نیز در ابتدا انجام می شود .

فضاهای که در مرحله تجهیز کارگاه براساس نقشه‌های مشاور باید احداث گردند طبق روال ابتدا ریز شده و در نقشه‌های جزئیات به تایید نظارت می رسد و سپس اجرای آنها شروع می‌شود . فضاهای معمول تجهیز کارگاه در یک پروژه سدسازی عبارتند از :

- کانکس‌های اداری شامل دفاتر ریاست کارگاه، ریاست دستگاه نظارت، دفتر فنی نظارت، دفتر فنی پیمانکار ، اتاق جلسات، سالن اجتماعات، نمازخانه ، سرویسهای بهداشتی ، دفاتر امور اداری ، امور مالی ، امور پشتیبانی، دبیرخانه ، مخابرات و ...

- کانکس‌های کمپ مسکونی شامل خوابگاه مدیران ومهندسان ، خوابگاه کارمندی و کارگری ، انبار کمپ ، آشپزخانه و کلوپ (سالن تلویزیون)

- کانکس‌های ساختمانها و تاسیسات اجرایی شامل : رختکن و اتاق استراحت مهندسین وکارگران ـ انبارها ـ آزمایشگاه ـ تعمیرگاه ماشین آلات ـ کارواش ـ بچینگ وتاسیسات وابسته مانند کولینگ و یخ‌سازها ـ کانکس‌های واحد برق ، تراشکاری، کارگاه چوب، کارگاه فلز ، سوله آرماتوربندی، انبار ناریه واتاق پرسنل آتشباری، پمپ بنزین، اتاقهای پرسنل ماسه شویی و سنگ شکن وپست برق، باسکول ، سیلوی سیمان و انبار آن، کمپرسورخانه، سایبان دیزل ژنراتور، منبع آب ، منبع سوخت، ساختمان بهداری، ایمنی وآتش نشانی، تیرهای چراغ برق، سپتیک‌ها وغیره .

محل هر یک از آیتمهای فوق که در پلان جانمایی کارگاه مشخص می شوند باید به نحوی باشند که در مسیر جاده یا محل احداث سازه‌های وابسته قرار نگیرند .

عملیات اجرایی سد:

با توجه به اسناد ارزیابی آیتمهای اجرایی یک سد عبارتند از : حفاری پی و تکیه گاه سد وتحکیمات ، احداث دیوار آب بند و پرده آب بند، حفاری سرریز و آبگیر ، خاکریزی بدنه سد ونصب ابزار دقیق، بتن ریزی سرریز و آبگیر که در ذیل روش اجرای آنها خواهد آمد .

حفاری پی سد وتکیه‌گاههای جناحین :

کلا" عملیات خاکی مانند خاکبردرای وحفاری وابستگی زیادی به ماشین آلات دارد. بلدوزر ، لودر ، کمپرسی، بیل مکانیکی، بیل شاول، داپتراک، دریل واگن ، جک هَمِر، از انواع ماشین آلات کاربردی در عملیات خاکی هستند .

یکی از مسائلی که در اجرای پروژه‌ها باحجم خاکبرداری زیاد مطرح است تعیین محل دپوی خاکهای حاصل از حفاری وخاکبرداری است که باید قبل از شروع عملیات با هماهنگی دستگاه نظارت، محل دپو مشخص گردد .

الف ـ‌ خاکبرداری پی :

حفاری وخاکبرداری پی تا جایی ادامه پیدا می کند که به لایه نفوذ ناپذیر مانند سنگ برسیم. با توجه به اینکه در پروژه‌های سدسازی معمولا" سطح آبهای زیرزمینی بالا می‌باشد اگر در حین خاکبرداری به آب رسیدیم با تعریف ایستگاههای پمپاژ و اجرای زهکش‌ها و سپس لجن برداری توسط بیل مکانیکی یا بلدوزر با تلاقی عملیات حفاری را ادامه می دهیم. اگر در کار لجن برداری با مشکل مواجه شدیم می توان اندکی خاک خشک به لجن اضافه کرد و سپس آنرا با لجن میکس کرد و بعد اقدام به بارگیری وحمل نمود .

در حفاری پی سنگهای سست باید برداشته شود که بسته به حجم سنگ می توان از جک همر یا دریل واگن و انفجار نسبت به برداشتن سنگ اقدام کرد .

ب ـ حفاری تکیه‌گاه :

خاکبرداری وحفاری تکیه‌گاه نیز معمولا" تا رسیدن به جنس مناسب مصالح ادامه پیدا می‌کند. در احداث سدها خاکبرداری تکیه‌گاه با شیب مناسب ومطابق طرح از مسائل مهم به شمار می رود .

در زمینهای خاکی عملیات خاکبرداری با بلدوزر و با هدایت مباشر عملیات خاکی براساس سرشیبهای پیاده شده توسط نقشه‌بردار انجام می‌شود تا شیب مناسب در خاکبرداری حاصل آید .

در زمینهای خاکی با حجم سنگی پایین وحفاری با جک همر باید همر دستگاه در زاویه مناسب قرار داشته باشد و در زمینهای سنگی که حجم سنگ بالا است و نیاز به انفجار دارد چالهای حفر شده توسط دریل واگنها باید زاویه مطلوب را داشته باشد .

در خاکبرداری همواره باید توجه داشته باشم که مسیرهای دسترسی را قطع نکنیم. همچنین باید مراقب بود تا با کسر حفاری مواجه نشویم چرا ممکن است بعدا" اصلاح کم حفاری‌ها به دلیل عدم وجود دسترسی غیرممکن گردد و عملیات اجرا نظم خود را از دست بدهد .

در جاهایی که حفاری وخاکبرداری بیشتر به علت محدودیتهای توپوگرافی مقدور نباشد یا هزینه بیشتری را موجب شود یا به هر دلیل دیگری نخواهیم حفاری ادامه پیدا کند با توجه به جنس ونوع مصالح ترانشه باید آنرا تحکیم کرد. تحکیمات با توجه به نوع پروژه، جنس مصالح و زمین، موقعیت سنگها و واریزه‌ها انواع مختلفی دارد :

استفاده از بتن پاشی در یک یا دو لایه یا بیشتر ، بستن مش در لایه‌های شاتکریت (بتن پاشی) توسط سیم انتظار استفاده از راک بولتها وانکرها و تزریق تحکیمی دوغاب سیمان (در صورت نیاز جهت مهار قطعات سنگی ترانشه) استفاده از دیوار حائل بتنی یا سنگی وغیره .

در پروژه‌های سدسازی برای اینکه جلوی آبهای نشتی از زیر بدنه سد را بگیرند باید پی سد را در برابر آب درحد قابل قبول نفوذ ناپذیر نمایند. این کار معمولا" بوسیله تزریق دوغاب سیمان به لایه‌های زیر پی سد در زیرهسته رسی انجام می شد که به احداث پرده آب بند یا پرده تزریق معروف می باشد.

در سد خاکی با هسته رسی و دیوار آب بندی، اگر منظور احداث دیوار آب ‌بند به منظور آب بندی پی سد باشد می توان از مطلب زیر استفاده کرد .

احداث دیوار آب بند در پی سد :

اگر به دلیل سست بودن و تخلخل زیاد لایه‌های ریزپی از نظر زمین شناسی، روش پرده تزریق کارایی لازم را نداشته باشد ذیل عمل خواهیم کرد :

ابتدا مقدمات کار یعنی احداث حوضچه گل، دیوارهای راهنما و سکوی حفاری می بایست انجام شود.

احداث حوضچه ها : ابتدا حوضچه‌های گل تازه، گل کارکرده، آب تازه و ایستگاه پمپاژ ساخته می شوند . ابعاد حوضچه‌های گل براساس عمق پانل ومشخصات خاک بستر تعیین می‌گردد. باتکمیل حوضچه‌ها کار نصب لوله وپمپ انجام می شود .

ساخت دیوارهای راهنما : به منظور هدایت وکنترل کاتر دستگاه حفاری ، دیوارهای زوج راهنمابا بتن ساخته می شوند .

برای سکوی حفاری نیز یک پلتفرم یا محل صافی را خاکبرداری یا خاکریزی کرده با غلطک می کوبند تا دستگاه حفار در آنجا قرار گیرد .

حفاری پانلهایی به عمق حداکثر 87 متر وعرض حدود 8/0 متر وطول 4/2 متر توسط دستگاه هیدرو فرز انجام می‌شود . پانلها بصورت اولیه وثانویه حفای می شوند به این طریق که بین پانلهای اولیه حفاری شده، پانلهای ثانویه حفاری می‌شوند تا یکپارچگی دیوار آب بند تامین گردد یعنی به صورت یک در میان اولیه وثانویه حفر می شوند . در هنگام حفاری، مصالح حاصل از حفاری بهمراه گل حفاری به واحد تصفیه گل هدایت شده و پس از جدایش مصالح از گل حفاری، دوباره گل حفاری به داخل پانل هدایت می‌شود. گل حفاری در اصل کار تامین پایداری ترانشه حفاری شده را انجام می دهد .

در حین حفاری مشخصات گل دائما توسط آزمایشگاه کنترل می‌گردد. با اتمام عملیات حفاری عملیات بتن ریزی توسط لوله ترمی آغاز می‌شود. بتن ریزی در شرایطی صورت میگیرد که پانل از گل حفاری پر است. براساس مشخصات طرح پانلها براساس بتن پلاستیک (بتن بنتونیت‌دار) یا بتن سازه‌ای پر می‌شوند . بتن پلاستیک از مقاومت فشاری کم ولی مدول ارتجاعی و نفوذناپذیریی بالایی برخوردار است .

در پروژه‌هایی که از دیوار باربری بالایی انتظار می‌رود قبل از بتن ریزی ابتدا قفسه آرماتور نصب می شود در غیر این صورت در دیوار آرماتور به کار نمی رود.

اجرای پرده آب بند یا پرده تزریق :

1- در اکثر پروژه‌های سد سازی ابتدا چالهای اکتشافی حفاری می شود وپس از کرگری و بررسی جنس لایه‌های زمین اقدام به تصمیم گیری درخصوص احداث پرده تزریق می‌شود.

2- تزریق یکی از رشته‌های تخصصی ژئوتکنیک محسوب می شود .

3- تعیین جزئیات روش اجرایی معمولا" از ابتکار پیمانکار نشأت می گیرد .

4- پیمانکار لازم است در طی آزمایشهایی دوغابهای مختلف را مورد بررسی قرار دهد.

5- طبیعت پنهان کارهای تزریق اقتضاء می کند که پیمانکار از کارهای انجام شده در هر مرحله نتیجه گیری وارزیابی داشته باشد و با هماهنگی نظارت کارهای بعدی را با نتایج بدست آمده برنامه ریزی کند.

6- برای اجرای پرده تزریق ابتدا مقدمات آنرا فراهم می کننداین مقدمات شامل موارد زیر میباشد:

آماده سازی سکوی تزریق ـ تجهیزات آزمایشگاه صحرایی جهت انجام آزمایشات دوغاب سیمان ـ تهیه دبی سنج و فشارسنج ثابت جهت بالا بردن دقت آزمایش لوژن (نفوذپذیری آب و ترزیق دوغاب سیمان)، خرید سیمان با استعلام از کارخانه‌های سازنده بصورت بسته بندی شده.

پس از فراهم آوردن مقدمات ابتدا شروع به حفاری گمانه‌های تزریق می نمایند. برای جلوگیری از ریزش دیواره گمانه‌ها روشهای مختلفی وجود دارد که بستگی به شرایط پروژه و قطر گمانه وجنس زمین دارد. یکی از کاربردی‌ترین روشها کیسینگ گذاری گمانه است .

پس از حفاری گمانه‌ها دستگاههای تزریق در محل شروع به تزریق می نمایند. هرچه بلین سیمان بیشتر باشد برای تزریق مناسبتر است. چون در شیارها وحفره ها بهتر نفوذ می کند . البته انتخاب بلین سیمان بستگی به شرایط زمین شناسی دارد . در هنگام تزریق مشخصات سیمان مانند بلین و میزان سیالیت دوغاب کنترل می گردد. دوربین‌های تلویزیونی برای مشاهده اندازه ، تعداد ، کیفیت درزها و نیز دستگاه اتوماتیک اندازه‌گیری دوغاب مصرفی از ابزارهای مهم در عملیات اجرایی تزریق محسوب می شود .

خاکریزی بدنه سد :

یکی از مهمترین مسائل در پروژه‌هایی که حجم خاکریزی زیادی نیاز دارد تامین محل قرضه مناسب می باشد تا حدی که ممکن است به دلیل عدم وجود تامین مصالح پروژه را غیراقتصادی کند. وجود معادن مانند معدن رس در سدهای خاکی در نزدیکی محل پروژه می‌تواند به توجیه پذیر بودن پروژه از لحاظ اقتصادی کمک کند. برای تامین سایر انواع مصالح در سدهای خاکی مانند فیلتر ، درین ، کوبل و سنگریزه و ریپ راپ راههای مختلفی موجود است بعنوان مثال برای تامین فیلتر احداث پلانهای ماسه شویی معمولا" اجتناب ناپذیر است . همچنین ممکن است مثلا" برای تامین سنگریزه از مصالح حاصل از انفجارات سرریزها و آبگیرها استفاده شود که این موارد بستگی به نوع مصالح بدنه سد و جنس زمین اطراف سد دارد .

یکی از مبناهای اصلی شروع خاکریزی سدها اجرای خاکریز آزمایشی است که می تواند همزمان با حفاریهای پی سد انجام شود. هدف از اجرای خاکریز آزمایشی مشخص نمودن مقدار Maxتراکم مصالح موجود به وسیله تغییرات درصد رطوبت، ضخامت لایه، تعداد عبور غلطک، نوع غلطک، سرعت غلطک، وزن غلطک می باشد .

قبل از اجرای خاکریزی، بستر وپی باید از نظر مشخصات فنی به تایید دستگاه نظارت برسد وهر قسمت از بستر آماده خاکریزی شده توسط پیمانکار تحویل بستر به نظارت انجام شده و صورتجلسه شود. سپس دستگاه نظارت اقدام به دادن مجوز خاکریزی می‌کند. قبل از اجرای هسته رسی لازم است تا چاله‌ها توسط بتن پرکننده پر شود. عیار بتن پرکننده بسته به نوع پروژه از 150 تا 200 کیلوگرم سیمان در مترمکعب متغیر

است . سپس به جهت محافظت از هسته رسی بتن ریزی هسته رسی که به بتن پلنیت معروف است اجرا می شود که عیار آن بین 200 تا 300 می باشد .

در برخی پروژه‌ها با توجه به نوع پروژه ممکن است تکیه گاه در محل هسته رسی نیز بتن پاشی (شاتکریت) شود. رعایت مشخصات مصالح و رسیدن به تراکم لازم خاکریزی از مهمترین مشخصات فنی سدهای خاکی است. نوع مشخصات فنی مصالح با توجه به جنس مصالح متفاوت است بعنوان مثال در هسته رسی مشخصاتی مانند دانه بندی ، PI و LL ،در صد نفوذپذیری مصالح ، مقاومت قطعات سنگ،درصد ریز الک 200،ارزش ماسه‌ای SE و PI مد نظر می باشد.

رس اتصال یعنی رسی که در مجاورت پی یا تکیه‌گاهها است نیز مشخصات خاصی دارد خصوصا" حد خمیری آن باید طبق مشخصات فنی رعایت گردد .

روش اجرا با توجه به نوع مصالح متفاوت است به این ترتیب که محل آبدهی مصالح ، نوع غلطک، ارتفاع لایه‌های خاکریزی، درصد تراکم لازم، نوع آزمایش دانسیته .

رسی که بعنوان هسته نفوذناپذیر سد اجرا می شود ابتدا باید عمل آوری شود یعنی یکسری کارهایی روی رس انجام شود تا آماده ریختن وتراکم گرفتن حداکثر شود افزودن آب به رس در محل عمل آوری بتن از نظر اقتصادی به صرفه‌تر است . در عمل آوری ابتدا محل کرت‌های عمل آوری توسط نقشه‌بردار پیاده می شد. سپس رس از معدن به محل عمل آوری توسط کمپرسی‌ها حمل شده در عمل آوری دپو می شد. بعد با بلدوزر خاک رس را پخش می‌کردند آبدهی به مصالحی مانند سنگریزه در محل خاکریزی به دو شکل می تواند انجام شود :

تانکر آبپاش

علمک‌هایی که در ایستگاه پمپاژ احداث شده‌اند وتوسط پمپ و لوله به روی باند خاکریزی هدایت شده و شلنگ آبپاشی انجام می شود .

مقدار اختلاف ارتفاع در باندهای خاکریزی بستگی به نظر نظارت ومشاور دارد. بعنوان مثال در سدهایی که هسته رسی مایل دارند لایه‌های پایین دست باید حدود 5/0 متر بالاتر از لایه‌های بالادست خود باشند تا مصالح هسته رسی روی فیلتر بخوابد .

در ادامه عمل آوری :

حوضچه‌هایی درست می کنند و آب را داخل آنها می اندازند و آب آنقدر در این کرت‌ها می ماند تا ته نشین شود. سپس توسط بلدوزر خاک رس را میکس می‌کنند بعد از اینکه میکس کامل انجام شد رس عمل آوری شده، دپو می شودو توسط لودر بارگیری و توسط کمپرسی به محل خاکریزی هسته رسی سبز انتقال داده می شوند با این اقدام دیگر نیازی به آبدهی در محل خاکریزی برای رس وجود ندارد .

قبل از خاکریزی هرلایه باید بر آن لایه Order یا مجوز خاکریزی صادر شود. در مجوزهای خاکریزی باید تاریخ ، نوع مصالح، شماره لایه یا عرض وضخامت لایه، وضعیت ابزار دقیق، وضعیت مصالح در اتصال به تکیه‌گاه ، محل دقیق خاکریزی مشخص شده، نتیجه آزمایش دانسیته در آن ثبت می‌گردد و اگر نتیجه آزمایش مثبت بود مجوز خاکریزی لایه بعدی توسط نظارت صادر گردد . اگر نتیجه آزمایش دانسیته مثبت نباشد بستگی به مقدار دانسیته دو حالت اتفاق می‌افتد یا باید غلطک چند پاس دیگر لایه بکوبد یا مصالح نامرغوب باید جمع‌آوری شود و مصالح جدید با مشخصات فنی مطلوب ریخته و کمپکت شوند . شیب لایه‌های خاکریزی دائما" توسط نقشه بردار کنترل می گردد .

نصب ابزار دقیق سدها

ابتدا پیمانکار شرکت های تأمین کننده ابزار دقیق را به دستگاه نظارت معرفی می نماید و از بین آنها یک شرکت برگزیده می شود و سفارش به آن شرکت ارسال می گردد. قبل از خاکریزی نصب ابزار دقیق انجام می شود.برای نصب بعضی از ابزار دقیق ها مانند RP لازم است تا گمانه‌هائی در پی حفر شوند و همزمان با بالا آمدن لایه‌های خاکریزی،لوله ابزار دقیق هم بالا بیاید.

زمانی که ابزار دقیق در سنگریزه قرار می‌گیرد دور لوله آنرا با مصالح نرم‌تر مانند ساب بیس پر کرده وبا کمپکتورهای دستی می کوبند .

در هنگام خاکریزی باید از کابلهای ابزار دقیق مراقبت کرد تا در اثر عبور ماشین‌آلات قطع نشود. انواع ابزار دقیق با توجه به مشخصات پروژه سدسازی عبارتند از :

EP (Electric Piezometer )

SP(Stand pipe piezometer)

RP(Rock piezometer)

بتن ریزی سرریز و آبگیر :

پس از حفاری وتحکیمات ابتدا باید طبق نقشه آرماتورهای سازه سرریز (دیواره‌ها وکف) در سوله مربوط به آرماتورها طبق لیستوفر خم وبرش شده به پای کار حمل شوند. سپس نقاط قالبها توسط نقشه‌بردار مشخص می شود و بعد اکیپ آرماتوربند اقدام به جاگذاری و بستن آرماتورها طبق نقشه می نماید. وجود دستگاه جرثقیل یا تاورکرین جهت جابجایی آرماتورهای دپو شده و رساندن به داخل مقطع آرماتوربندی سرعت کار را افزایش می دهد .      با توجه به نوع شبکه آرماتور که آرماتور کف باشد یا دیوار،ساپورت یا خرک (در صورت نیاز) تعبیه می شود. برای اینکه کاور آرماتورها رعایت شود اقداماتی را باید انجام داد که این اقدامات با توجه به نوع شبکه آرماتور متفاوت است. البته شایع‌ترین این اقدامات قرار دادن لقمه سیمانی بین آرماتور و قالب است. پس از بستن شبکه آرماتور نوبت به قالب بندی می‌رسد .

برخی قالبها در محل کار ساخته می‌شوند مانند قالبهای تخته‌ای پرکننده یا قالبهای کوچک چوبی نما یا قالبهای فلزی نما که در محل کار مونتاژ می‌شوند و برخی قالبها در نجاری یا آهنگری ساخته شده به محل نصب حمل می‌شوند. قالبها باید طبق نقشه لیفت بندی بسته شوند. نقشه لیفت‌بندی و لیستوفر آرماتوربندی معمولا" توسط دفتر فنی پیمانکار از روی نقشه‌های اصلی مشاور تهیه و ریز شده جهت تایید به نظارت ارسال می شود و پس از اصلاح وتایید توسط نظارت به پرسنل اجرایی پیمانکار داده می‌شود.

انواع قالبها چه قالب نما باشند چه قالب بتن پرکننده باید خوب مهار شوند تا در برابر فشار بتن‌ریزی مقاومت کافی را داشته باشند.

طریقه مهار قالب در برابر بتن ریزی وابستگی زیادی به ارتفاع بتن ریزی دارد. هرچه ارتفاع بتن بیشتر باشد فشار آن به قالب بیشتر است . پس از بستن قالب نوبت تمیزکاری مقطع وتحویل آن به نقشه‌بردار وپس از آن به پرسنل نظارت که این تحویل براساس مجوزهای بتن‌ریزی مکتوب می شود. در مجوزهای بتن ریزی تاریخ، محل بتن ریزی، رقوم بتن‌ریزی، وضعیت جوی هوا ، ساعت شروع وخاتمه نوع بتن، حجم تقریبی، کنترل پی، نقشه‌برداری، قطعات مدفون ، آرماتوربندی، قالب بندی ، نوار آب بند (واتراستاپ) ، پمپ بتن، جرثقیل، ویبراتور، شمشه ماله ، آزمایشگاه ، تمیزکاری، کروکی ومختصات، سیمان ، مصالح سنگی، بتن ساز مرکزی، تراک میکسر، دمای بتن ، دمای محیط ثبت میشود.

علل رایج تخریب سدهای خاکی

در ادبیات مهندسی ، سدها را گاه به موجودات زنده تشبیه می‌کنند، زیرا به دلیل تغییر در وضعیت محیط زمین شناختی در طول زمان شرایط حکمفرما در سد و مخزن نیز دائما در حال تغییر است. از این رو سدها باید بگونه‌ای طراحی و اجرا شوند که در تمام طول بهره برداری پایداری قابل قبولی از خود نشان دهند. آگاهی از هر گونه تغییر در شرایط سد و محیط اطراف آن محتاج نصب دستگاههای متنوع رفتار سنجی دایمی است.

آب جمع شده در مخزن ممکن است از محل پی سد یا تکیه گاههای جانبی آن یا از جسم سد تراوش نماید. فرار آب از جسم سد ، بویژه در سدهای خاکی اهمیت خاصی در پایداری سددارد.روشهای متنوعی برای کاستن از میزان آب نشتی و تحت کنترل در آوردن آن وجود دارد. ویژگیهای سنگ و خاک سازنده پی سد و تکیه گاهای آن ، مصالح در دسترس برای ساختمان سد ، نحوه طراحی و شکل انتخاب شده برای سد و سرانجام محدودیتهای اجرایی هر یک به نحوی می‌توانند در انتخاب روشهای مناسب برای آب بندی سد موثر واقع شوند.

 

مهمترین علل رایج تخریب سدهای خاکی

سر ریز شدن سد

·  نحوه ایجاد و خسارات :

این امر موجب شسته شدن تاج و نهایتا تخریب سد می‌شود. حدود 30 درصد از خرابیهای سد خاکی ناشی از سر ریز شدن آنها بوده است.

· روشهای مقابله :

برآورد دقیق بزرگترین سیلاب محتمل و طراحی سرریزهایی با ظرفیت مناسب تخلیه آنها ، علاوه بر آن باید

فاصله سطح آزاد آب مخزن تا تاج سد (ارتفاع آزاد ) بگونه‌ای در نظر گرفته شود تا بر اثر نشست سد یا

امواج حاصل از زمین لرزه ، آب از روی سد سر ریز نکند.

 

برخورد خط تراوش با دامنه پایاب:

·  نحوه ایجاد و خسارات:

اگر سطح ایستایی درون سر دامنه پایاب را قطع نماید، شسته شدن ذرات ریز و ناپایداری سد را به همراه خواهد داشت.

· روشهای مقابله :

با بقیه زهکشهای مناسب در پاشنه سد ، خط تراوش آب به داخل جسم سد منتقل می‌شود.

 

رگاب

· نحوه ایجاد و خسارات :

شسته شدن ذرات ریز از میان ذرات درشت تر به تدریج به ایجاد مسیر های آزاد گذر آب منجر می‌شود.

· روشهای مقابله :

این کار از طریق به حداقل رساندن مقدار و سرعت آب نشتی توسط انتخاب مصالح مناسب و تعبیه هسته نفوذ ناپذیر و صافیهای مناسب صورت می‌گیرد.

 

مسیر آزاد گذر آب

· نحوه ایجاد و خسارات :

در امتداد ترکهای ناشی از شست سد یا ترکهای ایجاد شده در مراحل آغازین گسیختگی ایجاد می‌شود. به موازات سطح خارجی لوله‌ها و مسیر آب بر ، در امتداد سطح تماس بخشهای بتنیبا خاک ، در سطح لایه‌های خاکی که به دقت کوبیده یا متراکم نشده‌اند و از طریق سوراخهای ایجاد شده توسط حیوانات حفار و ریشه گیاهان بوجود می‌آید.

· راههای مقابله :

چون در سدهای خاکی پس از تشکیل مسیر گذر آب ، مقابله با آن دیگر امکانپذیر نیست. لذا باید در مراحل طراحی و اجرای سد دقت کافی جهت جلوگیری ار این شکل به عمل آید.

 

ناپایداری دامنه‌ها

·نحوه ایجاد و خسارات :

نشست بدنه سد ، ایجاد ترکهایی در طول تاج سد یا دامنه پایاب و افزایش دبی زهکشها در پاشنه سد می‌توانند نشانه‌هایی از آغاز توسعه یک گسیختگی باشند.

·روشهای مقابله :

طراحی مناسب شیب دامنه‌های سراب و پایاب سد با در نظر گرفتن جنس و مشخصات مصالح مصرفی ، جلوگیری از افزایش ناخواسته فشار آب در جسم سد و در نظر گرفتن زمین لرزه‌های محتمل مهمترین عوامل برای مرتفع کردن این مساله است.

 

گسیختگی پی

·نحوه ایجاد و خسارات :

اگر بر اثر بار گذاری ناشی از ایجاد سد ، آبگیری آن با نیروهای ناشی از زمین لرزه ، تنشهای برشی ایجاد شده در پی سد از مقاومت برشی مصالح بیشتر شود، پی گسیخته می‌شود. این شرایط در رسهای تحکیم نیافته اغلب بلافاصله بعد از اولین آبگیری و در رسوبات ماسه‌ای بیشتر بر اثر بار گذاری چرخه‌ای زمین لرزه ایجاد می‌شود.

·روشهای مقابله :

تحکیم کافی خاکهای چسبنده و متراکم نمودن خاکهای بدون چسبندگی به روش تحکیم دینامیکی یا لرزش و ایجاد امکان زهکشی آب در زمان وقوع زمین لرزه به توسط ایجاد ستونهای سنگی یا چاههای زهکش.

 

فرسایش پذیری

·نحوه ایجاد و خسارات :

فرسایش سطح خارجی سد ، گر چه در کوتاه مدت همانند مشکلات دیگری که ذکر شد نمی‌تواند خطر آفرین باشد. ولی در دراز مدت ممکن است از کارآیی سد بکاهد.

·روشهای مقابله :

انتخاب سنگریز مناسب در دامنه سراب برای محافظت آن از اثر امواج و در دامنه پایاب برای مقابله با اثرات زیانبار نزولات جوی و هوازدگی.

مقدمه ای بر بررسی های ایمن سازی در سدهای قوسی

سدهای قوسی از انواع سدهای با اضافه ظرفیت باربری بالا و خصیصه ی خود انطباقی و برتری نسبت ایمنی به قیمت بهره می برند. هر چه سد قوسی مرتفع تر و بزرگتر باشد، به همان نسبت شرایط زمین شناسی محل سد پیچیده تر بوده و ظرفیت مخزن نیز بزرگ تر خواهد بود. بنابراین، در صورت وقوع هر گونه خرابی در این سدها، اقتصاد ملی متحمل زیان فراوان شده و زندگی و دارایی مردم در معرض خطر قرار خواهد گرفت. در نتیجه، خسارت بالای ناشی از فروریزی سد نشان دهنده ی اهمیت بالایی است که باید به ارزیابی و نظارت بر مسائل امنیتی سد اختصاص داده شود.

درحال حاضر، مهمترین اهداف در بررسی های امنیتی در این زمینه شامل، تئوری مقاومت، تئوری پایداری، تئوری قابلیت اتکاء، تئوری صدمات شکستگی به همراه تحلیل های شبیه سازی عددی، تست مدل ژئوهندسی، ارزیابی و تحلیل بالعکس داده ها و غیره می باشد. با این وجود، این اهداف، دور از اصول تئوریکال علمی و اقبال از سوی چرخه ی مهندسین سد می باشد. این مقاله درباره ی پیشرفت های صورت گرفته در زمینه ی سدهای قوسی و زیان و خسارت ناشی از فروریزی این سدها و خلاصه ای بر تئوری های اصلی موجود و اهداف ارزیابی های امنیتی سدهای قوسی بوده و نقاط ضعف این تئوری ها و اهداف را تحلیل کرده و مشکلات موجود بر سر راه تحقیقات آینده را مورد اشاره قرار داده و نهایتاً به مسائل و موضوعات حیاتی و نقاط مشکل ساز به عنوان ارزیابی های امنیتی سدهای قوسی می پردازد

مقدمه:

سدهای‌ قوسی‌ گونه‌ای‌ از سدهای‌ امن‌ و اقتصادی‌ می‌باشند. از زمان‌ ساخت‌ اولین‌ سد قوسی‌ در جهان‌ (سد زولا) در فرانسه‌ در سال‌ 1854 و اولین‌ سد قوسی‌ بلند در جهان‌(سد هاور) (به‌ ارتفاع‌ 221 متر و طول‌ تاج‌ 372 متر) در آمریکا در سال 1936، سدهای ‌قوسی‌ به‌ لطف‌ اضافه‌ ظرفیت‌ باربری‌ منحصر بفرد و خصیصه ی خود- تنظیمی، به‌ وفور مورد توجه‌ مهندسین‌ سد در زمینه‌ ساخت‌ سد در سراسر جهان ‌قرار گرفته‌ اند‌. در حال‌ حاضر بیش‌ از نیمی‌ از سدهای‌ عظیم‌ ساخته‌ شده‌ در سراسر جهان‌ با ارتفاعی‌ بیش‌ از 200 متر از نوع‌ سدهای‌ قوسی‌ می‌باشند. در نواحی‌ غربی‌ چین‌ گروهی‌ از سدهای‌ قوسی‌ ممتاز جهان‌ با ارتفاعی‌ بیش‌ از 300 متر در دست‌ ساخت‌ بوده‌ و یا ساخته‌ خواهند شد. سد سازی‌ در تمام‌ کشورهای‌ جهان این‌ موضوع‌ را به‌ اثبات‌ رسانیده‌ است‌، که‌ هر چه‌ سد بلندتر و مرتفع تر باشد، اهمیت‌ اقتصادی‌ و جنبه های‌ امنیتی‌ آن‌ بیشتر خواهد بود. بطور کلی‌، سدهای‌ قوسی‌ با مخازن‌ عظیم مانند سد قوسی‌ مالپاستفرانسه‌، سد قوسی‌ وایونت ایتالیا و غیره ثابت کرده اند که در صورت‌ فروریزی و خرابی، عواقب‌ این‌ مسئله‌ کاملاً جدی‌ بوده‌ و نه‌ تنها اقتصاد ملی‌ را متحمل‌ زیان‌ قابل‌ توجهی‌ می کنند، بلکه‌ جان‌ و مال‌ مردم‌ را شدیداً به‌ خطر خواهند انداخت‌. در سال‌ 1959 سد قوسی‌ مالپاست‌ فرانسه‌ به‌ دلیل‌ لغزش‌ بدنه‌ سد بهمراه‌ لایه ی‌ عمیق ‌سنگی‌ شالوده‌، فرو ریخت‌ که‌ این‌ اتفاق‌ منجر به‌ مرگ‌ 400 نفر و از دست‌ رفتن‌ سدمایه ی اقتصادی‌ هنگفتی‌ گردید. 
بنابراین‌ اهمیت‌ بالایی‌ باید به‌ مسائل‌ امنیتی‌ سدهای ‌قوسی‌ داده‌ شود و بررسی‌های‌ عمیقی‌ باید به‌ سمت‌ تنش‌، تغییر شکل‌ و مکانیزم تخریب در حین‌ بهره‌ برداری‌ از این‌ سدها سوق‌ داده‌ شود و همچنین‌ ارزیابی هایی در ارتباط‌ با ضریب‌ اطمینان‌ سدهای‌ قوسی‌ باید صورت‌ پذیرد. .( به‌ این‌ معنی‌ که‌ فاصله ی بین‌ حالت‌ طراحی‌ شده‌ و حالت‌ تخریبی‌ سد قوسی‌ باید ارزیابی‌ شود). به‌ طور کلی‌ اکثر سدهای‌ قوسی‌ دارای‌ شرایط‌ ژئولوژیکی‌ پیچیده‌، شرایط‌ محیطی ناسازگار، عدم‌ قطعیت‌ فیزیکی‌ (تصادفی)، پارامترهای‌ مکانیکی‌ و غیره‌ می باشند. تمام‌ این‌ فاکتورها باعث‌ عدم‌ قطعیت‌ در تحقیقات‌ صورت‌ گرفته‌ درزمینه ی امنیت سدهای‌ قوسی‌ شده‌ است‌. تمام‌ تئوری ها و اهداف‌ حال‌ حاضر دارای‌ هم نقطه‌ ی ضعف‌ و هم نقطه ی قوت‌ بوده که‌ باید پیشرفت ها و تکمیلات مربوطه‌ به‌ سرعت‌ صورت‌ پذیرد. ‌ ‌

بررسی‌ ایمنی‌ سدهای‌ قوسی‌ توسط‌ تئوری‌ مقاومت‌
بر طبق‌ تئوری‌ مقاومت‌، خرابی‌ یک‌ سد قوسی‌ به‌ جهت‌ ترک های‌ قوسی‌ ایجاد شده‌ براثر تنش‌های‌ کششی‌ اضافی‌، تسلیم شانه و یا بدنه ی سد بر اثر تنش های‌ فشاری‌ اضافی‌، لغزش‌ بدنه ی صخره‌ای‌ سد در امتداد سازه ی‌ نرم‌ و ضعیف‌ بر اثر تنش های‌ برشی‌ اضافی و... به‌ وقوع‌ می پیوندد. با مقایسه ی‌ مقاومت‌ تحت‌ شرایط‌ محدود شده‌ و اثر بار طراحی‌ می‌توان‌ مشخص‌ نمود، که آیا سازه‌ به‌ مقاومت‌ تخریبی‌ (مقاومت‌ نهایی‌) خود رسیده ‌است‌ یا خیر. در کشورهایی‌ مانند ایالات‌ متحده‌، ژاپن‌، چین‌ و... رسم‌ بر این‌ است‌ که‌ ضریب اطمینان‌ مقاومت‌ کششی‌ و فشاری‌ از طریق‌ آنالیز تنش‌ ـ کرش‌ سد قوسی‌ توسط‌ فرایند تقسیم‌ بار تیر قوسی‌ بدست‌ آمده و سپس‌ ضریب‌ اطمینان‌ مقاومت‌ برشی‌ براساس‌ اصل‌ تعادل‌ حد بدنه ی صلب محاسبه‌ شود.

در محاسبات‌ عددی‌ توسط‌ فرآیند المان ‌محدود و...مقیاس‌ مور- کولمب و دراکر ـ پراگر به‌ طور معمول‌ به‌ عنوان‌ میزان‌ تسلیم‌ برای ‌مصالح‌ سنگی‌ خاکی‌ مورد استفاده‌ قرار می‌گیرند. در حالی‌ که‌ برای بتن مقیاس‌ پارامتری‌ چهارگانه به‌ طور معمول‌ مورد استفاده‌ قرار می گیرد.

مزایای‌ ضریب‌ اطمینان‌ مقاومت‌ عبارت‌ است: از محاسبات‌ ساده‌، قرارگیری‌ بر پایه ی سال‌ها تجربه‌ و فعالیت‌ مهندسین‌ سد، متداول‌ در بین ‌مهندسین‌ و متخصصین‌ سد و همچنین‌ قابلیت‌ انطباق‌ با ضرائب اطمینان‌ مجاز مشخص‌ شده‌ در کشورهای‌ مختلف‌. مشکل‌ این‌ راه‌ حل‌ آن‌ است‌ که‌ نارسایی‌ مقاومت‌ موضعی‌ ممکن‌ نیست‌ باعث‌ تخریب‌ کلی‌ سد قوسی‌ شود و تنها زمانی‌ که‌ سطح‌ تماس‌ لغزش،‌ یک‌ صفحه‌ و یا یک‌ قوس دایروی باشد و از قبل‌ داده‌ شده‌ باشد، می‌توانیم‌ یک‌ نتیجه ی محاسباتی‌ منطقی‌ ازضریب‌ اطمینان‌ تنش‌ برشی‌ بدست‌ آوریم‌. به‌ علاوه روش تئوری‌ مقاومت‌، بدنه‌، شانه و شالوده ی‌ سد را به‌ عنوان‌ یک تسلیم جامع‌ و کلی‌ در نظر نمی‌گیرد. برای‌ کامل کردن‌ فرآیند آنالیز ضریب‌ اطمینان‌ مقاومت‌، بسیاری‌ از دانشجویان‌ از جنبه‌های‌ مختلف‌ به‌ تحقیق‌ پرداخته‌اندسان مینگ کووان، ژانگ جینگ جیان و… ضریب اطمینان نقطه ای را بررسی و پیشنهاد کرده‌اند. چنجیان پینگ، وانگ لیانکوی و… تأثیر و طول ترک ها را بر روی‌ تخریب ‌سدهای‌ قوسی‌ مورد مطالعه‌ قرار داده‌ و یک مقدار بحرانی را برای‌ ترک‌ و طول‌ ترک ها پیشنهاد کرده اند. چن جین، هووانگ وی و… تحلیل هایی‌ را بر روی اندازه‌ سطح‌ ترک‌ خورده‌ انجام‌ داده‌ و فرضیه ی ‌سطح‌ ترک‌ را پیشنهاد کرده‌ و دامنه ی‌ بحرانی‌ را نیز به‌ دست‌ آورده‌اند. تمام‌ تحقیقات‌ و مطالعات‌ فوق‌ الذکر به‌ مفاد آنالیز تئوری‌ مقاومت‌ سدهای‌ قوسی‌اضافه‌ شده‌ است‌. با این‌ وجود قبول‌ و انتخاب‌ این‌ مفاهیم‌ نیازمند مطالعات‌ بیشتری ‌می باشد.

بررسی‌ ایمنی‌ سدهای‌ قوسی‌ توسط‌ تئوری‌ پایداری
طبق‌ مکانیک‌ سنتی، هیچ‌ گونه‌ مشکل‌ پایداری‌ وجود ندارد، و لغزش‌ سد قوسی‌ درامتداد سطح‌ تماس‌ فونداسیون‌، ناپایداری‌ شانه های‌ سد، و لغزش بلوک‌ سنگی‌ درامتداد سطح‌ تماس‌ سازه‌، همگی‌ مرتبط‌ با تخریب‌ مقاومتی‌ می باشند. اما با توجه‌ به ‌تعریف‌ پایداری کینماتیک، هر گونه‌ تغییر در یک‌ حالت‌ و یا یک‌ شیئ‌، یک‌ حرکت‌ به‌ حساب‌ آمده‌ و موضوع‌ پایداری‌ مطرح‌ می‌شود. زمانی‌ که‌ تمام‌ بدنه‌ سد به‌ دلایل‌ مختلف‌ درحالت‌ پایداری‌ محدود شده‌ به‌ سر می‌برد، تنها یک‌ آشفتگی‌ جزئی‌ باعث‌ انحراف‌ سد ازحالت‌ تعادل‌ اولیه‌ خود شده‌ و باعث‌ تخریب‌ غیر قابل‌ بازگشت‌ می‌شود. با توجه‌ به‌ این ‌اصل‌ که‌ زمانی‌ که‌ تخریب‌ کامل‌ سد قوسی‌ اتفاق‌ می‌افتد، حالت‌ سکون‌ سد به‌ حالت قابل‌ حرکت‌ تغییر می‌کند، رن دینگ ون با توجه‌ به‌ منبع مطالعات‌ تغییر حالت ‌سیستم‌، پیشنهاد کرد که‌ تخریب‌ کامل‌ سدهای‌ قوسی‌ ممکن‌ است‌ در ارتباط‌ باپایداری‌ باشد. اما بر خلاف‌ ناپایداری‌ کمانشی، این‌ نوع‌ ناپایداری‌ مربوط‌ به‌ ناپایداری‌ حد نقطه‌ای‌ بوده و شاخص‌ تعیین‌ کننده ی‌ امنیت‌ سد قوسی‌ همان‌ اتکاء سد می باشد. با توجه‌ به‌ تحقیقات‌ صورت‌ گرفته‌ در ارتباط‌ با ناپایداری‌ سد قوسی‌ تا هم‌ اکنون‌هیچگونه‌ پیشرفتی‌ نه‌ بر پایه ی‌ تئوری مکانیکی‌ دقیق‌ حتی‌ به‌ شکلی‌ ساده‌ و عملی‌صورت‌ نگرفته‌ است‌. در حال‌ حاضر، پیشرفت‌هایی‌ در زمینه‌های‌ تحقیقاتی‌ در ارتباط ‌با پایداری‌ کلی‌ سد قوسی‌ به‌ قرار زیر صورت‌ گرفته‌ است‌: روش‌ اضافه‌ بار، ذخیره ی مقاومت‌، روش‌ ترکیبی اضافه‌ بار و ذخیره ی مقاومت و غیره. ‌

ـ روش‌ اضافه‌ بار

طبق‌ این‌ روش‌ با فرض‌ ثابت بودن پارامترهای‌ مقاومت‌ مصالح‌ و تحت‌ عمل‌ ترکیبی‌ بارهای ‌عملی‌ نرمال‌، بار افقی‌ با افزایش‌ حجم‌ مخزن‌ (بالاتر رفتن تراز آب‌) تا آنجا افزایش‌ می‌یابد، که‌ ناپایداری‌ و تخریب‌ سد قوسی‌ واقع‌ شود. ثابت‌ اضافه‌ بار عبارت‌ است‌ از نسبت‌ بار تخریبی‌ به‌ بار قائم‌ (نرمال‌)، ضریب‌ اطمینان‌ اضافه‌ بار غالباً بسیار بالا بوده‌ و می‌تواند به‌ روش‌ مدلسازی‌ ژئومکانیکی‌ و یاشبیه‌ سازی‌ حسابی‌ بدست‌ آید. با این‌ حال‌ در عین‌ فعالیت‌ طبیعی‌ سد قوسی‌ اضافه‌بار بیش‌ از اندازه‌ بسیار غیر محتمل می باشد، بعلاوه، اثر عواملی‌ همچون‌ پی‌ سنگی، خوردگی‌، نشست‌ و قلیایی شدن‌ مصالح‌ سازه‌ای‌ به دلیل وجود آب‌ بر روی‌ مقاومت‌ در نظر گرفته نشده است ‌( الالخصوص‌ ناحیه ی‌ ضعیف‌ پی‌ سنگی ‌).بهر حال‌، خطر واقعی‌ به‌ خاطرتشدید بار نمی باشد، بلکه‌ بخاطر کافی نبودن مقاومت‌ مصالح‌ می باشد.

ـ روش‌ ذخیره ی مقاومت‌
بر طبق‌ این‌ روش‌، تحت‌ شرایط‌ عدم‌ تغییر بارعمودی‌، مقاومت‌ بدنه‌ سد و پی‌ سنگی به تدریج‌ کاهش‌ می‌یابد، تا زمانی‌ که‌ ناپایداری‌ و تخریب‌ سد قوسی‌ وقوع‌ یابد و ضریب ذخیره ی‌ مقاومت عبارت‌ است‌ از تعداد دفعات‌ کاهش‌ نیمه‌. با این‌ حال‌، در این روش به‌ تعدادی مدل نیاز است‌. به‌ طور کلی‌ این‌ آزمایش‌ بر طبق‌ اصل‌ تعادل‌ انجام ‌می‌شود، بدین‌ معنا که‌ به‌ جای‌ ثابت‌ نگه داشتن‌ بار خارجی‌ و کاهش‌ تدریجی‌ مقاومت‌ مصالح‌، مقاومت‌ مصالح‌ ثابت‌ نگه‌ داشته‌ می‌شود وهمزمان‌ بار خارجی‌ و بار مرده ی‌ خود سد افزایش‌ می‌یابد، تا آنجا که‌ تخریب‌ صورت‌ پذیرد. برای‌ آزمایش‌ به‌ روش‌ ذخیره‌ ی مقاومت‌ معادل،‌ مشکل‌ اساسی‌ که‌ همزمان‌ بودن‌ افزایش‌ بار خارجی‌ پی‌ سنگی‌ و بدنه ی‌ سد می باشد باید حل‌ گردد
گو چونماو، گونگ ژاوزیاگ و… بر طبق‌ اصل‌ ارضاء تشابه‌ مدل‌ فیزیکی‌ و با استفاده‌ از دستگاه گریز ازمرکز* بعنوان‌ دستگاه‌ بارگذاری‌ و جایگزین‌ کردن‌ میدان‌ ثقلی با میدان‌ نیروی‌ گریز از مرکز‌، متوجه ی‌ افزایش‌ همزمان‌ بار خارجی‌ پی‌ سنگی‌ و بدنه‌ سد شدند و آزمایش‌ به روش ذخیره ی مقاومت معادل‌ را بر روی‌ یک‌ مدل‌ انجام‌ دادند. نتیجه‌ آزمایش‌ نشان‌ داد که‌ گرایش‌ بزرگی‌ تنش‌ و بزرگی‌ تنش های‌ کششی‌ و فشاری به‌ طور اساسی‌ به‌ سمت‌ قانون‌ عمومی‌ می باشد. برای‌ انجام‌ آزمایش‌ به‌ روش‌ ذخیره ی مقاومت‌ بر روی‌ یک‌ نمونه‌، نیاز به‌ ایجاد مصالح‌ جدیدی‌ می باشد که‌ بتواند تغییرتدریجی‌ مقاومت‌ برشی‌ پی‌ سد، سطح نرم‌ و ضعیف‌ سازه‌ بر روی‌ پی‌ سنگی‌ را آشکار ساخته‌ و همچنین‌ تکنیک های‌ آزمایش‌ را پاسخ‌ گو باشد.
لو جینچی، لی چاووگو و... بعد از سالها بررسی “ مصالح با تغییرات مشابه دما“ را توسعه‌ داده اند که‌ برای‌ مدلسازی‌ گسل های‌ بین‌ لایه‌ای‌ و بدنه‌ های صخره ای‌ قابل‌ استفاده می‌باشد. این‌ مصالح‌ از بلنک فیکس*، روغن‌ موتور، مصالح‌ و مخلوطهای حل‌ شدنی‌ پلیمری که‌ به‌ میزان‌ معینی‌ با هم‌ ترکیب‌ شده‌اند، ساخته‌ شده‌ است‌. در حین‌ آزمایش‌ با افزایش‌ دما، مقاومت‌ مصالح‌ بتدریج‌ کاهش‌ می‌یابد. با وجود اینکه‌ ضریب‌ ذخیره ی‌ مقاومت‌ یک‌ تصویر واضح را ارائه‌ می کند، اما علت‌ اصلی تخریب‌ سد قوسی‌ نمی‌باشد. بنابراین‌ کاهش‌ مقاومت به‌ نسبت‌ نامساوی‌ منطقی تر می باشد و فرآیند تضمین‌ برابراغلب‌ مورد استفاده‌ قرار می‌گیرد.

ـ روش‌ ترکیبی‌
تخریب‌ یک‌ سد قوسی‌ تنها به‌ دلیل‌ اضافه‌ بار و یا کاهش‌ مقاومت‌ مصالح‌ نمی باشد، بلکه‌ به‌ دلیل‌ اثر توامان‌ دو فاکتور مذکور است‌. بر طبق‌ روش‌ ترکیبی‌، با ترکیب کردن اضافه‌ بار با ذخیره‌ مقاومت،‌ زمانی‌ که‌ سد قوسی‌ به‌ یک‌ ضریب‌ اضافه‌ بار مشخصه می رسد، مقاومت‌ باید به‌ اندازه ی ان مرتبه‌ کاهش‌ داشته‌ شود، که‌ باعث‌ تخریب‌ سد قوسی‌ می شود
روش‌ ترکیبی‌ از لحاظ‌ تئوری‌ معقول‌ می باشد، اما عملکرد واقعی‌ نسبتاً کامل‌ شده می باشد. خصوصاً هیچ‌ گونه‌ استاندارد استواری‌ در ارتباط‌ با اینکه‌ تا چه‌ اندازه‌ باید اضافه‌ بار ‌ایجاد شود، قبل‌ از اینکه‌ مقاومت‌ مصالح‌ کاهش‌ پیدا کند، وجود ندارد. در حال‌ حاضر، مطالعه ی کلی تخریب‌ ناپایداری‌‌، تنها توسط‌ آزمایش‌های‌ مدل هندسی ‌صورت‌ می پذیرد و موفقیت‌هایی‌ در شبیه‌ سازی‌ کامپیوتری و محاسبات‌ عددی‌ روند خرابی‌ سدهای‌ قوسی‌ صورت‌ پذیرفته‌ است.

کاربرد تحلیل‌ پایداری سدهای‌ قوسی‌ در ارزیابی‌ ایمنی‌ سدهای‌ قوسی
همانطور که‌ درجهان‌ مادی‌ به‌ طور چشمگیری‌ دیده‌ می‌شود، تصادفی‌ بودن‌، احتمال‌ وقوع‌ یک‌ پدیده‌ در یک‌ حالت‌ خاص‌ را منعکس‌ می‌کند. در مورد سدهای‌ قوسی‌ این‌ موضوع‌ درعدم قطعیت‌ در ارتباط با خصوصیات‌ مصالح‌ و بارگذاری‌ خارجی‌ دیده‌ می‌شود. تحلیل پایداری طبق‌ تئوری‌ احتمال‌ و آمار ریاضیاتی‌، روش‌ منطقی تر و پیشرفته تری‌ را درارزیابی‌ ایمنی‌ سدهای‌ قوسی‌ ارائه‌ می کند. تحلیل پایداری در زمینه ی احتمال‌ به ما پاسخ‌ می دهد، بدین‌ معنا که‌ اعتبار عملکرد نرمال‌ سد قوسی‌ تحت‌ شرایط‌ کاربری‌ خاص‌ و محیط‌ اطراف‌ در طول‌ عمر سازه‌ تحت‌ مطالعه‌ قرار می گیرد. 
گو هوایژی، چن زوپینگ، لیو نینگ و… با فرض تصادفی‌ بودن‌ بارگذاری‌ (شامل‌ تغییرات‌ درجه‌ حرارت‌) و پارامترهای‌ مصالح‌، بررسی‌های‌ خود را به‌ سوی تغییرات‌ زمانی‌ سد قوسی‌ بتنی‌ و تودة‌ سنگی‌ شانه‌ سد معطوف کرده‌اند. وانگ سیجینگ، هوانگ ژیکوان و… اثر احتمال‌ ناپایداری‌ توده‌ سنگی‌ و تغییر پذیری پارامتر مکانیکی‌ بر روی‌ سازه‌ را تحت‌ مطالعه‌ قرار داده‌اند. لیان جیجان، یانگ لینگ کیانگ و… با در نظر گرفتن‌ بارگذاری‌ و پارامتر مصالح‌ به‌عنوان‌ متغیرهای‌ تصادفی‌ و با کمک‌ المان‌ محدود تصادفی‌ توزیع‌ شاخص پایداری سد قوسی‌ را بررسی‌ کرده اند. با وجود اینکه‌ تئوری های‌ پایداری، کاربردهای‌ نسبتاً گسترده‌ای‌ را در آنالیز ایمنی ‌سدهای‌ قوسی‌ پیدا کرده است، اما تنها در پایداری نقطه‌ای‌ قابل استفاده می باشند. تلاش های‌ بیشتری‌ در جهت‌ شناسایی‌ طرح‌ مهندسی‌ بر پایه‌ ی آنالیز پایداری سیستماتیک‌ باید صورت‌ پذیرد، مخصوصاً برای‌ بررسی‌ و حل‌ یک‌ سری‌ از مشکلات تکنیکی‌ و تئوریکال‌ مانند روش‌ آنالیز پایداری سیستماتیک‌، تکنیک‌ آنالیز شبکه ی احتمال‌ کاربردی‌، سیستم تصمیم گیری‌‌، پارامترهای‌ آماری قانون توزیع‌ و غیره.

تئوریهای‌ دیگری‌ در زمینه ی ارزیابی‌ ایمنی‌ سد قوسی‌
عده‌ای‌ از پژوهشگران‌ معتقدند که‌ تخریب‌ یک‌ سد و توده‌ ی سنگی‌ به‌ دلیل‌ گسترش‌ مستمر ترک‌های‌ ایجاد شده‌ بر اثر تجمع‌ دائمی‌ آسیب اولیه‌ می‌باشد و بنابراین فرآیندهای‌ مکانیک‌ آسیب‌ و مکانیک‌ شکست‌ را می توان‌ برای‌ مطالعه ی‌ تخریب‌ سدهای قوسی‌ انطباق‌ داد. هوانگ یون و دیگران‌ پایداری‌ و تمایل‌ گسترش‌ ترک‌های ‌پاشنه ی‌ سد در طرف‌ بالا دست‌ سدهای‌ قوسی‌ را به‌ کمک‌ فرآیند المان‌ شکست‌ سه بعدی‌ و تئوری فاکتور تراکم‌ انرژی‌ کرنش‌ حداقل‌ مورد مطالعه‌ قرار داده‌ و متوجه شده اند که‌ شکافتن‌ بر اثر آب‌، فاکتور اصلی‌ در جهت‌ انتشار ترک های ابتدایی می باشد. پژوهشگران‌ دیگر به‌ سد قوسی‌ به‌ عنوان‌ یک‌ سیستم‌ دینامیکی‌ توجه‌ کرده و خرابی‌ را ازنقطه‌ نظر تغییر شکل‌ غیر خطی‌ مورد بررسی‌ قرار داده‌اند. زمانی‌ که تخریب‌ تجمعی‌ وتغییر شکل‌ سیستم‌ سد قوسی‌ از بی‌نظمی‌ به‌ انتظام‌ گسترش‌ می‌یابد، و منحنی‌ تغییرشکل‌ سیستم‌ از روال‌ مساوی‌ و خطی‌ به‌ شتاب‌ و غیر خطی‌ گسترش‌ می‌یابد، خرابی کلی در حال‌ صورت‌ پذیرفتن‌ می باشد. طبق‌ بررسی های‌ صورت‌ گرفته‌ در زمینه ی‌ علل‌ خطاهای‌ صورت‌ گرفته‌ در سد دو قوسی "کن" واقع‌ در اتریش‌، لومباردی متخصص‌ و مهندس‌ سد سوییسی، نظریه ی ضریب‌ لاغری سدها را در سال‌ 1986 بیان‌ و منحنی لومباردی* را ارائه‌ کرد، که‌ این‌ منحنی‌ یک‌ خط‌ صاف‌ می باشد که‌ تنها بستگی‌ به‌ ارتفاع‌ سد دارد.رن کویینگ ون و دیگران‌ شکل‌ و علل‌ ایجاد این‌ منحنی آسیب را به‌ کمک‌ تئوری پایداری کمانشی و مقاومت‌ بدنة‌ سد مورد مطالعه‌ قرار داده‌ و پیشنهاد کردند که‌ منحنی لومباردی به‌ دو دسته‌ تقسیم‌ شود: دسته‌ اول هذلولی‌هایی‌ با در نظر گرفتن‌ مقاومت‌ بتن‌ بدنه‌ سد به‌ عنوان‌ پارامترمی باشند، که‌ بستگی‌ به‌ ارتفاع‌ سد و مقاومت‌ بتن‌ بدنه‌ سد دارند، دسته‌ دوم منحنی های توانی می باشند، که‌ بستگی‌ به‌ کمانش‌ بدنه ی‌ سد دارند، به‌ این‌ معنا که‌ بستگی به مدول الاستیسیته ی بتن‌ بدنة‌ سد، ارتفاع‌ سد و... دارند. ‌

نتیجه گیری و پیش بینی ها

خصوصیاتی‌ از قبیل‌ ذخیره ی سرمایه‌ گذاری‌، ظرفیت‌ باربری‌ و ایمنی‌ بالا، باعث شده‌ است‌ که‌ سدهای‌ قوسی‌، مخصوصاً سدهای‌ بلند قوسی‌ مورد توجه‌ تمام‌ کشورهای جهان‌ قرار گیرند. سدهای‌ قوسی‌ به‌ طور فزاینده‌ای‌ بلندتر ساخته‌ می شوند و شالوده ها نیز به‌ طورفزاینده‌ای‌ پیچیده تر می شوند. شرایط‌ ژئولوژیکی پیچیده‌ و متغیر، به‌ همراه‌ تلفات سنگین‌ در صورت‌ تخریب‌ سدهای‌ قوسی،‌ دانشمندان‌ را بر آن‌ داشته‌ تا به‌ بررسی‌ وحل‌ مشکلات‌ تکنیکی‌ ساخت سدهای‌ قوسی‌ بپردازند. شکافتن‌ و تسلیم‌ شدن‌ به دلیل‌ تنش‌ موضعی بیش‌ از حد پاسخ‌ طبیعی‌ هر سد قوسی می باشد. بی‌ شک‌ قبل‌ از تخریب‌ سد قوسی‌، یک‌ فرآیند شکافت‌ و تسلیم‌ بوجود می‌آید و درطی‌ این‌ فرآیند پتانسیل‌ سد قوسی‌ پایدار مانده‌ و بنابراین‌ کارکرد ایمن‌ ادامه‌ می‌یابد. بنابراین‌ بررسی‌ عملکرد و مکانیزم‌ سدهای‌ قوسی‌ در طی‌ فرآیندی‌ که‌ از تسلیم موضعی مقاومت شروع و تا تخریب‌ کامل‌ سد به‌ طول‌ می انجامد، بسیار لازم‌ و ضروری است‌. در بعضی‌ کشورها مانند چین‌ معتقدند که‌ تئوری‌ پایداری سازه‌ باید در طراحی‌ سدهای قوسی‌ استفاده‌ شود. با این‌ وجود، در ارزیابی‌ حال‌ حاضر، پایداری سدهای‌ قوسی به‌ کمک تئوری‌ پایداری، توابع و‌ عملکردهای‌ انتخاب‌ شده ی بیشتر بر اساس‌ خصوصیات‌ تخریبی مقاومت‌ سدهای‌ قوسی‌ بوده و آنچه‌ در حال‌ حاضر در حال بررسی‌ می باشد، همچنان پایداری موضعی است‌. یکی‌ از مباحث‌ عمده‌ در مطالعات‌ آینده‌ چگونگی‌ انتخاب‌ متغیرهای‌ تصادفی‌ به‌ گونه‌ای‌ است که منعکس کننده ی حالت‌ سیستم‌ سد قوسی‌ به‌ عنوان‌ متغیرهای‌ اصلی‌ برای‌ آنالیز پایداری کلی‌ سدهای‌ قوسی‌ باشد. با وجود اینکه ‌موفقیت‌های‌ چشمگیری‌ در زمینه ی‌ بررسی پایداری‌ لغزشی‌ سدهای‌ قوسی‌ در طول سطح‌ تماس‌ شالوده‌ و همچنین‌ در زمینه ی ناپایداری‌ بدنه ی سنگی‌ شانه‌ ی سد به‌ کمک تئوری‌ پایداری‌ جنبشی‌ صورت‌ پذیرفته‌ است‌، اما اجزاء یک‌ سد قوسی‌ شامل‌ بدنه‌ وشانه‌ سد و شالوده ی سنگی و تغییر شکل هایشان‌ بر روی‌ هم‌ اثر متقابل‌ گذاشته‌ وجدا نشدنی‌ می باشند. بنابراین‌ در نظر گرفتن‌ بدنه‌ و شانه ی سد و شالوده ی سنگی‌ به‌ عنوان ‌یک‌ مجموعه ی واحد جهت‌ بررسی‌ مکانیزم‌ خرابی‌ سدهای‌ قوسی‌ ارزش‌ بررسی‌ را داشته‌ و یک‌ معیار ناپایداری‌ کلی‌ را بدست‌ داده‌ وایمنی‌ کل‌ سد را مشخص‌ می سازد. بدنه‌ سدهای‌ قوسی‌ و مصالح‌ فونداسیون‌ که‌ اغلب‌ بتنی‌، سنگی‌ و خاکی‌ می‌باشند جزء مصالح‌ با کشش‌ پایین‌ و یا غیر کششی‌ می‌باشند. در حال‌ حاضر، معیارهای‌ تسلیم‌ مور ـ کولمب‌ و دراکر ـ پراگر و معیار چهار پارامتری‌ به‌ طور معمول‌ مورد پذیرش‌ مصالحی‌ مانند مصالح‌ سنگی‌ ـ خاکی‌ و بتنی‌ می‌باشد. تفاوت‌ عمده‌ای‌ بین‌ نسبت های‌ تنش‌ ـ کرنش‌ اندازه گیری‌ شده‌ سدهای‌ قوسی‌ و روابط‌ مذکور وجود دارد. از لحاظ‌ اقتصادی‌ این‌ موضوع‌ عملی‌ نمی باشد که‌ به‌ طورنامحدودی‌ نقاط‌ اندازه گیری‌ شالوده‌ سد را برای‌ بررسی‌ مدل‌ ساختمانی‌ مصالح افزایش‌ دهیم. در عوض‌، بسیار واقع‌ بینانه‌ و منطقی‌ است‌ که‌ یک‌ مدل‌ ساختمانی ازمصالح‌ بر اساس‌ اطلاعات‌ اندازه گیری‌ شده‌ صریح‌ به‌ کمک‌ فرآیند آنالیز معکوس‌ و یا تکنیک‌ تطبیق‌ شبکه ی عصبی‌ بدست‌ آوریم‌. به‌ لطف‌ خصوصیاتی‌ مانند مخارج‌ پایین آزمایش‌ کردن‌، غیر تخریبی‌ بودن‌ و... تکنولوژی‌ اندازه گیری‌ مایکروویو و تکنولوژی بررسی‌ لیزری، در ارزیابی‌ ایمنی‌ سدهای‌ قوسی‌ کاربردهای‌ وسیعی‌ را پیدا کرده‌اند.

اطلاعات‌ نشان‌ دهنده ی‌ آن‌ است‌ که‌ کاربری‌ بیش‌ از30 درصد از سدهای‌ قوسی متناقض‌ با کاربری های‌ پیش‌ بینی‌ شده‌ توسط‌ الگوهای‌ طراحی‌ است‌. در حین مطالعه ی‌ ایمنی طراحی‌ سدهای‌ قوسی‌، لازم‌ است‌ که‌ بررسی‌ها را معطوف‌ به‌ ایمنی کارکرد واقعی‌ سدهای‌ قوسی‌ کنیم. 

‌برای‌ جمع‌ بندی‌، بررسی‌های‌ صورت‌ گرفته‌ در زمینة‌ ایمنی‌ کلی‌ سدهای‌ قوسی‌ ازبلوغ‌ نهایی‌ خود به‌ دور بوده و تا زمان‌ حاضر شاهد کمبود روش های‌ عملی‌ که‌ بر اساس تئوری های‌ علمی‌ و اقبال‌ از سوی‌ چرخه‌ مهندسین‌ سد باشد می باشیم‌.  انتظار می رود تا همکاری های‌ بیشتری‌ در محیط های‌ دانشگاهی‌ و چرخه ی مهندسین سد برای‌ تحقیقات‌ و بررسی های‌ بیشتر صورت پذیرد.

سدهای مخزنی

بسیاری از قدیمی ترین سدهای جهان به منظور کنترل سیلاب احداث گردیده بودند. سدهای مخزنی غالباً چند منظوره بوده و برای اهدافی چون آبیاری، تامین آب شرب، تولید برق، مهار سیلاب و اهداف تفریحی مورد استفاده قرار میگیرند.  هدف یک مخزن مهار سیلاب، ذخیره قسمتی از جریان سیلاب به منظور کاهش حداکثر آن میباشد.

در صورتیکه سیلابهای رودخانه دارای خصوصیات فصلی باشند، کارایی مخازن چند منظوره برای کاهش پیک سیلاب به نحو قابل ملاحظه ای افزایش مییابد. در شرایط ایده آل مخزن درست در بالادست منطقه حفاظت شده قرار دارد و بهره برداری از آن به منظور کاهش حداکثر سیلاب به ظرفیت گذردهی ایمن پایین دست صورت میگیرد.

سیلاب ذخیره شده با توجه به زمان وقوع آن یا بتدریج رها میشود و یا در صورتیکه پایان فصل سیلاب نزدیک باشد، برای مصارف آبیاری و تولید برق ذخیره میشود. در صورت وجود حوزه میانی بعد از سد و منطقه مورد حفاظت، هدف مدیریت مخزن در جریان سیلاب، جاری شدن حداقل سیلاب در منطقه حفاظت شده خواهد بود که در اینصورت الزاما" سیلاب در محل سد حداقل نخواهد بود.

در صورتیکه سیلابهای رودخانه دارای خصوصیات فصلی باشند، کارایی مخازن چند منظوره برای کاهش پیک سیلاب به نحو قابل ملاحظه ای افزایش مییابد.

در کشور چین از سال 1950 تا 1990 بیش از 22000 سد بزرگ (50 درصد سدهای بزرگ جهان) و 63000 سد کوچک احداث گردید. یکی از مهمترین اهداف این سدها کاهش پیک سیلابها است. سدهای مخزنی در کشور چین عملکرد بسیار چشمگیری در کاهش قابل ملاحظه پیک سیلابهای بزرگ (تا 1000 ساله) داشته اند

در سدهای چند منظوره بعلت تضاد منافع مهار سیلاب با تولید انرژی برقابی و یا ذخیره سازی آب، مدل بهره برداری بهینه بکار گرفته میشود. با این وجود در صورت وجود مدل کارآی، پیش بینی و هشدار سیلاب، دستیابی توام به اهداف مهار سیلاب و تولید بیشتر انرژی برقابی امکان پذیر میباشد و در کشورهای چین و کره به انجام رسیده است.

سد برقابی HungLongtan با ظرفیت 150 مگا وات و حجم مخزن 103 م م م در چین واقع شده است. سیلاب طراحی این سد 500 ساله و سیلاب ایمنی آن 5000 ساله می باشد.

تراز مخزن را می توان 2 متر کاهش داد در صورتیکه زمان پیش هشدار سیلاب حدود 3 ساعت باشد. در سیلاب 1989، در اثر استفاده از سیستم پیش بینی سیلاب، نه تنها کاهش قابل ملاحظه دبی در پایین دست ممکن گردید بلکه 4 میلیون کیلو وات ساعت برق اضافی تولید گردد. در سیلاب سال 1992 که سیلابی با دوره بازگشت 100 ساله بود، پیک سیلاب از 21332 به 4198 مترمکعب بر ثانیه به میزان 80 درصد کاهش یافت. در زمان سیلاب کلیه توربین ها با ظرفیت کامل کار می کردند.

مدل های پیش بینی کارآ میتوانند تضاد منافع مهار سیلاب با تولید انرژی برقابی و یا ذخیره سازی آب را بر طرف نمایند.

در صورت وجود مدل کارآی پیش بینی و هشدار سیلاب، دستیابی توام به اهداف مهار سیلاب و تولید بیشتر انرژی برقابی در سدهای مخزنی امکان پذیر میباشد.

در یک طرح جامع سیلاب بهگزینی ابعاد سیستم مانند سدهای مخزنی، سیل بندها، کانالهای انحراف سیلاب بر اساس پارمترهای اقتصادی صورت می گیرد.