|
بتن با دوغاب تزریق شدهGrouted-aggregate concrete | بتن با نمای خوبFair face concrete |
بتن سخت شدهHardened concrete | بتن پر مایهFat concrete |
بتن ضد حرارتHeat- resistant concrete | بتن آرمه شده با الیافFiber-reinforced concrete |
بتن سنگین Heavy concrete | بتن الیاف دارFibrous concrete |
بتن رویه برای کفهای پرتردد Heavy-duty floor topping concrete | بتن کارگاهیField concrete |
بتن سنگینHeavyweight concrete | بتن کفیFoamed concrete |
بتن با دانسیته بالا High-density concrete | بتن با دانه بندی گسستهGap-graded concrete |
بتن با مقاومت زود رسHigh-early-strength | بتن گازیGas concrete |
بتن هوای گرمHot-weather concrete | بتن با دانه های گرانیتیGranolithic concrete |
بتن درجاIn-situ concrete | بتن تازه گرفتهGreen concrete |
بتن عایقبندیInsulating concrete | دوغابGrout |
بتن سبک عایقبندی Insulating lightweight concrete | بتن نیمه آمادهShrink-mixed concrete |
بتن بدون درزInternally sealed concrete | بتن متراکم شده با نیروی گریز از مرکزSpun concrete |
بتن لیتکسLatex concrete | بتن سازه ای, بتن ساختمانیStructural concrete |
بتن کم سیمان, بتن مگرLean concrete | بتن سازه های سبک, بتن ساختمانی سبکStructural lightweight concrete |
بتن کلوئیدی سبکLight colloidal concrete | بتن ضد سولفاتSulfate-resistant concrete |
بتن سبکLightweight concrete | بتن گوگرد دارSulfur-impregnated concrete |
بتن با دانسیته پایینLow-density concrete | بتن موزائیکیTerrazzo concrete/terrazzo |
بتن حجیمMass concrete | بتن در کامیون مخلوط شدهTransit-mixed concrete |
بتن یکپارچهMonolithic concrete | بتن شیشه دارTranslucent concrete |
ملاتMortar | بتن زیرآبTremie concrete |
بتن قابل میخکوبیNailable concrete | بتن در کامیون مخلوط شده Truck-mixed concrete |
بتن بدون ریزدانهNo-fines concrete | بتن واکیمیVacuum concrete |
بتن بدون اسلامپNo-slump concrete | بتن با دانه های ورمیکولیتیVermiculite concrete |
بتن معمولیNormal-weight concrete | بتن مرتعش شدهVibrated concrete |
بتن بسته بندی شدهPackaged concrete | بتن نماVisual concrete |
بتن سادهPlain concrete | بتن آب بندWatertight concrete |
پلاسترPlaster | بتن سفیدWhite concrete |
بتن خمیریPlastic concrete | بتن با اسلامپ صفرZero-slump concrete |
بتن اسفنجیAerated concrete | بتن با پلیمرPolymer-impregnated concrete |
بتن با حباب هواAir-entrained concrete | بتن متخلخلPopcorn concrete |
بتن معماریArchitectural concrete | بتن خلل فرج دارPorous concrete |
بتن پرکنندهBackfill concrete | بتن با سیمان پرتلندPortland cement concrete |
بتن سنگین برن دارBorn-loaded concrete | بتن پیش ساختهPrecast concrete |
بتن درجاCast-in-place concrete | بتن با دانه های از پیش چیده شدهPreplaced aggregate concrete |
بتن درجاCast-in-situ concrete | بتن با دانه های از پیش چیده شدهPrepacked concrete |
بتن متخلخلCellular concrete | بتن نیمه آماده , بتن با آبرفتگی پایینPreshrunk concrete |
بتن آمادهCentrally mixed concrete | بتن پیش تنیدهPrestressed concrete |
بتن متراکم شده با نیروی گریز از مرکزCentrifugally cast concrete | بتن پمپاژPumped concrete |
بتن هوای سردCold-weather concrete | بتن آمادهReady mixed concrete |
بتن کلوئیدیColloidal concrete | بتن آرمهReinforced concrete |
بتن رنگیColored concrete | بتن پر سیمانRich concrete |
بتن محبوسConfined concrete | بتن متراکم شده با غلتکRoller-compacted concrete |
بتن با سنگهای بزرگ Cyclopean concrete | بتن لاشه سنگیRubble concrete |
بتن توپرDense concrete | بتن خاک اره ایSawdust concrete |
بتن سفتDry-packed concrete | بتن حفاظیShielding concrete |
بتن نماExposed concrete | بتن پاشیدهShotcrete |
بتن با دانه های نمایانExposed aggregate conc. |
|
انواع بتن فاقد سیمان پرتلند
بتن عایقبندی نسوزRefractorty insulating concrete | بتن آسفالتیAsphalt concrete |
بتن رزین دارResin concrete | بتن بطور شیمیایی پیش تنیده Chemically-prestressed concrete |
بتن خود تنیدهSelf-stressing concrete | بتن اپوکسیEpoxy concrete |
بتن جبران کننده آبرفتگی Shrinkage-compenstated concrete | بتن پلیمریPolymer concrete |
بتن گوگردیSulfur concrete | بتن پلیمری با سیمان Polymer-cement concrete |
بتن با سیمان آلومیناتیAluminate |
|
بنام خدا
« قانون نظام مهندسی و کنترل ساختمان »
فصل اول ـ کلیات، اهداف و خط مشی ::
ماده 1ـ تعریف: نظام مهندسی و کنترل ساختمان عبارت است از مجموعه قانون، مقررات، آئیننامهها، استانداردها و تشکلهای مهندسی، حرفهای و صنفی که در جهت رسیدن به اهداف منظور در این قانون تدوین و به مورد اجراء گذاشته میشود .
ماده 2ـ اهداف و خطمشی این قانون عبارتند از :
1 - تقویت و توسعه فرهنگ و ارزشهای اسلامی در معماری و شهرسازی .
2 - تنسیق امور مربوط به مشاغل و حرفههای فنی و مهندسی در بخشهای ساختمان و شهرسازی .
3 - تأمین موجبات رشد و اعتلای مهندسی در کشور .
4 - ترویج اصول معماری و شهرسازی و رشد آگاهی عمومی نسبت به آن و مقررات ملی ساختمان و افزایش بهرهوری .
5 - بالا بردن کیفیت خدمات مهندسی و نظارت بر حسن اجرای خدمات.
6 - ارتقای دانش فنی صاحبان حرفهها در این بخش .
7 - وضع مقررات ملی ساختمان به منظور اطمینان از ایمنی، بهداشت، بهرهدهی مناسب، آسایش و صرفه اقتصادی و اجراء و کنترل . آن در جهت حمایت از مردم به عنوان بهرهبرداران از ساختمانها و فضاهای شهری و ابنیه و مستحدثات عمومی و حفظ و افزایش بهرهوری منابع مواد و انرژی و سرمایههای ملی .
8 - تهیه و تنظیم مبانی قیمتگذاری خدمات مهندسی .
9 - الزام به رعایت مقررات ملی ساختمان، ضوابط و مقررات شهرسازی و مفاد طرحهای جامع و تفصیلی و هادی از سوی تمام دستگاههای دولتی، شهرداریها، سازندگان، مهندسین، بهرهبرداران و تمام اشخاص حقیقی و حقوقی مرتبط با بخش ساختمان به عنوان اصل حاکم بر کلیه روابط و فعالیتهای آنها و فراهم ساختن زمینه همکاری کامل میان وزارت مسکن و شهرسازی، شهرداریها و تشکلهای مهندسی و حرفهای و صنوف ساختمان .
10 - جلب مشارکت حرفهای مهندسان و صاحبان حرفهها و صنوف ساختمانی در تهیه و اجرای طرحهای توسعه و آبادانی کشور .
ماده 3ـ برای تأمین مشارکت هر چه وسیعتر مهندسان در انتظام امور حرفهای خود و تحقق اهداف این قانون در سطح کشور سازمان نظام مهندسی ساختمان که از این پس در این قانون به اختصار سازمان خوانده میشود و در هر استان یک سازمان به نام سازمان نظام مهندسی ساختمان استان که از این پس به اختصار سازمان استان نامیده میشود، بق شرایط یاد شده در این قانون و آئیننامه اجرایی آن تأسیس میشود. سازمانهای یاد شده غیرانتفاعی بوده و تابع قوانین و مقررات عمومی حاکم بر مؤسسات غیرانتفاعی میباشند .
ماده 4ـ از تاریخی که وزرات مسکن و شهرسازی با کسب نظر از وزارت کشور در هر محل حسب مورد اعلام نماید، اشتغال اشخاص حقیقی و حقوقی به آن دسته از امور فنی در بخشهای ساختمان و شهرسازی که توسط وزارت یاد شده تعیین میشود، مستلزم داشتن صلاحیت حرفهای است. این صالحیت در مورد مهندسان از طریق پروانه اشتغال به کار مهندسی و در مورد کاردانهای فنی و معماران تجربی از طریق پروانه اشتغال به کار کاردانی یا تجربی و در مورد کارگران ماهر از طریق پروانه مهارت فنی احراز میشود. مرجع صدور پروانه اشتغال به کار مهندسی و پروانه اشتغال به کار کاردانی و تجربی وزارت مسکن و شهرسازی و مرجع صدور پروانه مهارت فنی وزارت کار و امور اجتماعی تعیین میگردد .
شرایط و ترتیب صدور، تمدید، ابطال و تغییر مدارک صلاحیت حرفهای موضوع این ماده و چگونگی تعیین، حدود صلاحیت و ظرفیت اشتغال دارندگان آنها، در آئیننامه اجرایی این قانون معین میشود .
تبصره 1ـ وزارت مسکن و شهرسازی و وزارت کار و امور اجتماعی حسب مورد موظفند ظرف 10 سال از تاریخ ابلاغ این قانون با استفاده از همکاری شهرداریها، مهندسان و سازمانها و تشکلهای حرفهای و صنفی شاغل در این بخشها دامنه اجرای این ماده را به کل کشور توسعه دهند. اهداف مرحلهای این امر و بودجه موردنیاز برای آموزش و آزمون اشخاص و سامان بخشیدن به صنوف و حرف فنی شاغل در این بخشها همه ساله در بودجه سالیانه دستگاه اجرایی مربوط پیشبینی خواهد شد .
تبصره 2ـ کلیه اشخاص حقیقی و حقوقی غیرایرانی جهت انجام خدمات موضوع این قانون باید مدارک صلاحیت حرفهای موقت دریافت دارند .
فصل دوم ـ تشکیلات، ارکان، وظایف و اختیارات سازمان .
ماده 5ـ ارکان سازمان عبارت است از هر یک از سازمان استانها، هیأت عمومی سازمان، شورای مرکزی سازمان، رئیس سازمان، شورای انتظامی نظام مهندسی .
ماده 6ـ برای تشکیل سازمان استان وجود حداقل 50 نفر داوطلب عضویت از بین مهندسان حوزه آن استان که دارای مدرک مهندسی در رشتههای اصلی مهندسی شامل معماری، عمران، تأسیسات مکانیکی، تأسیسات برقی، شهرسازی، نقشهبرداری و ترافیک باشند ضروری است .
تبصره 1ـ مهندس حوزه هر استان در این قانون به شخصی اطلاق میشود که حداقل متولد آن استان یا 6 ماه ممتد پیش از تاریخ تسلیم درخواست عضویت، در آن استان مقیم باشد .
تبصره 2ـ هر یک از مهندسان در بیش از یک سازمان نمیتوانند عضویت یابند .
ماده 7ـ عضویت اشخاص حقوقی شاغل به کار مهندسی در رشتههای اصلی و اشخاص حقیقی در رشتههای مرتبط با مهندسی ساختمان در سازمان استان بلامانع است .
تبصره 1ـ رشتههای مرتبط با مهندسی ساختمان به کلیه رشتههایی اطلاق میشود که عنوان آنها با رشتههای اصلی یاد شده در ماده 6 متفاوت بوده ولی محتوای علمی و آموزشی آنها با رشتههای اصلی بیش از 70% در ارتباط باشد و فارغالتحصیلان اینگونه رشتهها خدمات فنی معینی را در زمینههای طراحی، محاسبه، اجراء، نگهداری، کنترل، آموزش، تحقیق و نظایر آن به بخشهای ساختمان و شهرسازی عرضه میکنند اما این خدمات از حیث حجم، اهمیت و میزان تأثیر عرفا همطراز خدمات رشتههای اصلی مهندسی ساختمان نباشد .
تبصره 2ـ حدود صلاحیت حرفهای دارندگان مدارک تحصیلی دانشگاهی مرتبط با مهندسی ساختمان و عناوین این رشتهها توسط کمیسیونی متشکل از نمایندگان وزیر مسکن و شهرسازی، وزیر فرهنگ و آموزش عالی و رئیس سازمان تعیین و به تصویب وزیر مسکن و شهرسازی میرسد. مرجع تطبیق عناوین مدارک تحصیلی کمتر از معادل لیسانس و تعیین حدود صلاحیت حرفهای دارندگان آنها وزارت مسکن و شهرسازی است .
ماده 8ـ هر سازمان استان دارای مجمع عمومی، هیأت مدیره، شورای انتظامی و بازرسان است و محل استقرار دایم دفتر مرکزی آن در مرکز استان میباشد. سازمانهای استان میتوانند در سایر شهرهای استان و همچنین در مناطق مختلف شهرهای بزرگ مرکز استان در صورت پیشنهاد شورای مرکزی و تصویب وزیر مسکن و شهرسازی، در مرکز استانهای مجاوری که در آنها سازمان استان تأسیس نشده باشد، دفاتر نمایندگی دایر نموده و انجام تمام یا بخشی از وظایف مستمر سازمان در حوزه مربوط را به آن دفاتر محول کنند .
ماده 9ـ مجمع عمومی سازمان استان از اجتماع تمامی اشخاص حقیقی عضو دارای حق رأی سازمان که منحصر به دارندگان مدرک تحصیلی در رشتههای اصلی مهندسی ساختمان و رشتههای مرتبط است تشکیل میشود و وظایف و اختیارات آن به شرح زیر است :
الف ـ انتخاب اعضای هیأت مدیره .
ب ـ استماع گزارش عملکرد سالیانه هیأت مدیره و اعلام نظر نسبت به آن .
ج ـ بررسی و تصویب ترازنامه سالانه سازمان استان و بودجه پیشنهادی هیأت مدیره .
د ـ تعیین و تصویب حق ورودیه و حق عضویت سالانه اعضا و سایر منابع درآمد برای سازمان بر اساس پیشنهاد هیأت مدیره .
فیبر های شیشه باعث نفوذ نور به داخل بلوک ها می شوند. جالب ترین حالت این پدیده نمایش سایه ها در وجه مقابل ضلع نور خورده است. همچنین رنگ نوری که از پشت این بتن دیده می شود ثابت است به عنوان مثال اگر نور سبز به پشت بلوک بتابد در جلوی آن سایه ها سبز دیده می شوند. هزاران فیبر شیشه ای نوری به صورت موازی کنار هم بین دو وجه اصلی بلوک بتنی قرار می گیرند. نسبت فیبر ها بسیار کم و حدود 4 درصد کل میزان بلوک ها است. علاوه بر این فیبر ها بخاطر اندازه کوچکشان با بتن مخلوط شده و تبدیل به یک جزء ساختاری می شوند بنابر این سطح بیرونی بتن همگن و یکنواخت باقی می ماند. در تئوری، ساختار یک دیوار ساخته شده با بتن عبور دهنده نور، می تواند تا چند متر ضخامت داشته باشد زیرا فیبر ها تا 20متر بدون از دست دادن نور عمل می کنند و در دیواری با این ضخامت باز هم عبور نور وجود دارد. ساختارهای باربر هم میتوانند از این بلوکها ساخته شوند. زیرا فیبر های شیشه ای هیچ تاثیر منفی روی مقاومت بتن ندارند. بلوکها می توانند در اندازه ها ی متنوع و با عایق حرارتی خاص نصب شده روی آنها تولید شوند. این متریال در سال 2001 توسط یک معمار مجار به نام «آرون لاسونسزی» اختراع شد و به ثبت رسید. این معمار زمانیکه در سن 27 سالگی در کالج سلطنتی هنر های زیبای استکهلم مشغول به تحصیل بود این ایده را بیان کرد و در سال 2004 شرکت خود را با نام لایتراکان تاسیس کرد و با توجه به نیاز و تمایل جامعه امروز به استفاده از مصالح جدید ساختمانی، از سال 2006 با شرکت های بزرگ صنعتی به توافق رسیده و تولید انبوه آن به زودی آغاز خواهد شد.
موارد کاربرد دیوار: به عنوان متداول ترین حالت ممکن این بلوک می تواند در ساختن دیوارها مورد استفاده قرار گیرد. به این ترتیب هر دو سمت و همچنین ضخامت این متریال جدید قابل مشاهده خواهد بود. بنابر این سنگینی و استحکام بتن به عنوان ماده اصلی «لایتراکان» محسوس تر می شود و در عین حال کنتراست بین نور و ماده شدیدتر می شود. این متریال می تواند برای دیوارهای داخلی و خارجی مورد استفاده قرار گیرد و استحکام سطح در این مورد بسیار مهم است. اگر نور خورشید به ساختار این دیوار می تابد قرار گیری غربی یا شرقی توصیه می شود تا اشعه آفتاب در حال طلوع یا غروب با زاویه کم به فیبر های نوری برسد و شدت عبور نور بیشتر شود. بخاطر استحکام زیاد این ماده می توان از آن برای ساختن دیوار های باربر هم استفاده کرد. در صورت نیاز، مسلح کردن این متریال نیز ممکن است، همچنین انواع دارای عایق حرارتی آن نیز در دست تولید است. پوشش کف: یکی از جذاب ترین کاربرد ها، استفاده از «لایتراکان» در پوشش کف ها و درخشش آن از پایین است. در طول روز این یک کف پوش از جنس بتن معمولی به نظر می رسد و در هنگام غروب آفتاب بلوک های کف در رنگهای منعکس شده از نور غروب شروع به درخشش می کنند. طراحی داخلی: همچنین از این نوع بتن عبور دهنده نور می توان برای روکش دیوار ها در طراحی داخلی استفاده کرد به صورتی که از پشت نور پردازی شده باشند و می توان از نور های رنگی متنوع برای ایجاد حس فضایی مورد نظر استفاده کرد. کاربرد در هنر: بتن ترانسپارانت برای مدتها به عنوان یک آرزو برای معماران و طراحان مطرح بود و با تولید لایتراکان این آرزو به تحقق پیوست. کنتراست موجود در پشت متریال تجربه شگفت آوری را برای مدت طولانی در ذهن بیننده ایجاد می کند. در واقع با نوعی برخورد سورئالیستی محتوای درون در ارتباط با محیط پیرامون قرار می گیرد و به این ترتیب بسیاری از هنرمندان تمایل به استفاده از این متریال در کارهای خود دارند. به طور کلی با پیشرفت های تکنولوژیکی و ارائه خلاقیت طراحان و مجسمه سازان با ابزار های مختلف، پتانسیل و قابلیت بتن توسط هنرمندان گوناگون در تمام جهان مورد استفاده قرار گرفته است.
بلوکها مسلح کردن بلوک بتنی عبور دهنده نور: در صورت نیاز به مسلح کردن این بتن شیار هایی در داخل آن تعبیه می شوند. در حین ساختن دیوارها میلگرد ها بصورت عمودی یا افقی در این شیار ها قرار می گیرند و فیبر های اپتیکی بخاطر خاصیت انعطاف پذیری خود در اطراف میلگردها جمع می شوند و به این ترتیب میلگرد ها دیده نمی شوند. از این روش بصورت موفقیت آمیزی در چند پروژه و طراحی نمایشگاه استفاده شده است. رنگها و بافت ها: با توجه به رنگ خاکستری متداول بتن معمولی، لایتراکان دارای رنگهای متنوعی است و بافت سطوح بیرونی آن نیز می تواند متنوع باشد، به گونه ای که بلوکهای متنوع در کنار هم قرار گیرند و یک ساختار واحد را به وجود آورند. توزیع فیبرها: اندازه و ترتیب فیبر ها در هر بلوکی می تواند متفاوت باشد و این ترتیب قرار گیری می تواند کاملا منظم یا کاملا ارگانیک مانند مقطع چوب باشد.
مشخصات تکنیکی ترکیبات: <!--[if !supportLists]-->· <!--[endif]-->بتن و فیبر اپتیکی. <!--[if !supportLists]-->· <!--[endif]-->میزان فیبر حد اکثر 5 درصد کل بلوک. <!--[if !supportLists]-->· <!--[endif]-->عبور 3درصد نور تابیده از هر 4 درصد کل فیبر موجود. <!--[if !supportLists]-->· <!--[endif]-->چگالی 2400~2100 کیلوگرم بر سانتیمتر مکعب. <!--[if !supportLists]-->· <!--[endif]-->مقاومت فشاری 49 نیوتن بر میلی متر مربع در بدترین حالت و 56 نیوتن بر میلی متر مربع در بهترین حالت. <!--[if !supportLists]-->· <!--[endif]-->مقاومت خمشی معادل 7/7 نیوتن بر میلی متر مربع.
اندازه بلوکها: <!--[if !supportLists]-->· <!--[endif]-->ضخامت mm 500~25 <!--[if !supportLists]-->· <!--[endif]-->عرض حداکثرmm 600 <!--[if !supportLists]-->· <!--[endif]-->ارتفاع حد اکثر mm 300
لامپ لایترا کیوب Litracub Lamp یکی از محصولات موفق لایتراکان در زمینه طراحی، لامپ لایترا کیوب است که در آن بلوکها با قرار گیری روی هم مکعبی را تشکیل می دهند که منبع نور در داخل آن قرار دارد و نور با عبور از بتن به بیرون ساطع می شود. به این ترتیب این ماده جدید می تواند در عرصه های مختلف طراحی و همچنین در ایجاد فضاهای پویا و انعطاف پذیر داخلی بسیار مورد استفاده قرار گیرد. |
پیشینه موسیان در ۱۸۸۱ قوس کربنی را برای ذوب فلزات مورد استفاده قرار داد. اسلاویانوف الکترودهای قابل مصرف را در جوشکاری به کار گرفت. ژول در ۱۸۵۶ به فکر جوشکاری مقاومتی افتاد لوشاتلیه در ۱۸۹۵ لوله اکسی استیلن را کشف و معرفی کرد. الیهوتامسون آمریکائی از جوشکاری مقاومتی در سال ۷-۱۸۷۶ استفاده کرد. در جریان جنگهای جهانی اول و دوم جوشکاری پیشرفت زیادی کرد. احتیاجات بشر به اتصالات مدرن – سبک – محکم و مقاوم در سالهای اخیر و مخصوصاً بیست سال اخیر سبب توسعه سریع این فن شدهاست.
فرآیندهای جوشکاری با قوس الکتریکی جریان الکتریکی از جاری شدن الکترونها در یک مسیر هادی به وجود میآید. هرگاه در مسیر مذکور یک شکاف هوا(گاز)ایجاد شود جریان الکترونی و در نتیجه جریان الکتریکی قطع خواهد شد. چنانچه شکاف هوا باندازه کافی باریک بوده و اختلاف پتانسیل و شدت جریان بالا، گاز میان شکاف یونیزه شده و قوس الکتریکی برقرار میشود. از قوس الکتریکی به عنوان منبع حرارتی در جوشکاری استفاده میشود.روشهای جوشکاری با قوس الکتریکی عبارتند از: 1- جوشکاری با الکترود دستی یا MAW 2- جوشکاری زیر پودری SMAW جوشکاری زیرپودری یا SAW یکی از فرآیند های جوشکاری قوسی است. در این روش نوک الکترود داخل پودری از مواد معدنی ویژه قرار می گیرد و قوس در زیر این پودر در امتداد مسیر جوشکاری تشکیل می شود. در این روش قوس قابل مشاهده نیست.درسیستم زیرپودری از سیم بدون روکش استفاده می شود:طوری که سیم به طور متوالی از قرقره مخصوص رها می گردد و ضمن تشکیل قوس نقش واسطه اتصال را نیز بر عهده دارد.
3- جوشکاری با گاز محافظ یا GMAW یا MIG/MAG اساس روش GMAW بر برقراری قوس الکتریکی میان الکترود (سیمجوش) مصرف شدنی و قطعه کار میباشد و قوس و حوضچه جوش توسط گاز بی اثر محافظت میگردد. این روش به دو صورت اتوماتیک و نیمه اتوماتیک قابل انجام میباشد.تمام فلزات و آلیاژهای مهم صنعتی مانند فولادهای کربنی، فولادهای کم آلیاژ، فولادهای زنگ نزن، آلیاژهای آلومینیم، مس، نیکل، در تمام وضعیتها با این روش قابل جوشکاری میباشند.
- مزایا سرعت جوشکاری در این روش بالاست. نرخ رسوب بالاتر از روش زیر پودری SMAW است. استفاده از سیم جوش امکان جوشکاری طویل و بدون توقف را فراهم میسازد. امکان نفوذ بیشتر از روش زیرپودری فراهم است که در این صورت امکان ایجاد گرده کوچکتر با استحکام مشابه فراهم است. احتیاج به توانایی های شخصی کمتری برای جوشکاری دارد. به دلیل عدم وجود سرباره احتیاج به تمیزکاری کمی دارد.
- محدودیتها تجهیزات این روش به نسبت گران و حمل و نقل آن مشکل تر از SMAW است. استفاده ار این روش برای مقاطعی که دسترسی به آنها مشگل است با محدودیت در زمینه محافظت گاز مواجه است. استفاده از این روش در فضای باز به دلیل امکان وزش باد و اخلال در محافظت گاز با محدودیت مواجه است. به دلیل عدم وجود گل جوش و به تبع آن عدم کاهش نرخ انجماد در فولادهای سختیپذیر امکان ترک خوردن در فلز جوش وجود دارد.
4- جوشکاری با گاز محافظ و الکترود تنگستنی یا GTAW یا TIG در این فرآیند برای ایجاد قوس الکتریکی از الکترود مصرف نشدنی تنگستن استفاده میشود و الکترود و حوضچه مذاب به وسیله گاز خنثی محافظت میشود. این روش با نام جوش آرگون نیز نامیده میشود که اشتباه است. چون میتوان برای مثال از هلیوم نیز به عنوان محافظ استفاده کرد.
5- جوشکاری پلاسما جوشکاری پلاسما یکی از روشهای جوشکاری است که در آن با کاربرد گازهای خنثی درجه حرارت به بالای ۲۰۰۰۰ درجه سانتیگراد میرسد و و انرژی قوس بسیار متمرکز تر و پایدار تر از روش جوشکاری با گاز محافظ و الکترود تنگستنی TIG است. پلاسما به معنی گاز یونیزه شده میباشد. به دلیل اینکه این گاز در این درجه حرارت و حالت از قانون گازها پیروی نمیکند، حالت چهارم وجود ماده به آن گفته میشود (جامد، مایع، گاز، پلاسما) چنانچه هوا یا گاز در قوس الکتریکی شرایط گذار به حالت پلاسما را بیابد قوس مربوط دارای انرژی حرارتی بسیار زیادی خواهد شد.
فرآیندهای جوشکاری مقاومتی در جوشکاری مقاومتی برای ایجاد آمیزش از فشار و گرما هردو استفاده میشود.گرما به دلیل مقاومت الکتریکی قطعات کار و تماس آنها در فصل مشترک به وجود میآید. پس از رسیدن قطعه به دمای ذوب و خمیری فشار برای آمیختن دو قطعه بکار میرود. در این روش فلز کاملاً ذوب نمیشود. گرمای لازم از طریق عبور جریان برق از قطعات بدست میآید. روشهای جوشکاری مقاومتی عبارتاند از: جوش نقطهای درز جوشی جوش تکمهای
فرآیندهای جوشکاری حالت جامد دستهای از فرآیندهای جوشکاری هستند که در آنها، عمل جوشکاری بدون ذوب شدن لبهها انجام میشود. در واقع لبهها تحت فشار با حرارت یا بدون حرارت در همدیگر له میشوند. فرآیندهای این گروه عبارتاند از: جوشکاری اصطکاکی جوشکاری نفوذی جوشکاری با امواج مافوق صوت
ثابت شدهاست که فلزات در دمای اتاق هم قابل اتصالند. این عمل توسط ایجاد پیوندهای فلزی در دو سطح مورد اتصال ، انجام میگیرد . بطور ایده آل ، تشکیل اتصال فلزی بوسیلهٔ جوشکاری سرد ، و یا پیوند ( Bonding ) بطریق زیر متصور است : دو قطعهٔ بسیار صیقلی و تمیز در اختیار است . هرکدام از ایندو، مجموعهای از بارهای (+) و (-) میباشد به گونهای که هر قطعه بدون عیب و با استحکام کافی دارای پایداری است. اگر دو قطعه کاملاً نزدیک هم قرار گرفته و به هم بچسبند ، الکترونهای فرار از هر قطعه ، بین آندو مشترک میشود و در نتیجه نیروی عکس العمل بین سطوح زیاد میگردد . بنابراین وقتی دو سطح تماس کامل داشته باشند ، نیروهای عکس العملی بین اتمها ، خود به خود زیاد شده و یک اتصال محکم و قدرتمند بوجود میآید . ولی در عمل ، یک فلز هرگز صیقل کامل نمیخورد و همواره اعوجاج ماکروسکوپی در سطح دارد. Ultra Mic or Macroscopic و همین ناهمواریها ، مساحت واقعی تماس را چند برابر مقدار واقعی میکند. بدلیل وجود نقاط ناهموار میکروسکوپی ، لایههای سطحی فلز دارای انرژی سطحی قابل ملاحظهای در اثر پیوندهای فلزی اشباع نشده ، جاهای خالی و نیز نابجائیها Vacancies & Dislocations میباشد . بنابراین عکس العملهای شدیدی بین انتهای سطح فلز و محیط ایجاد میشوند . دقیقاٌ بلافاصله پس از سطح فلز ، یک ابر پیوسته از الکترونهای متحرک موجود است که متناوباً از سطح جدا و به آن مجدداً میپیوندند (dipole ۷ Double electric ) دانسیته بار این لایه که شامل دو قطب + و – میباشد ، ثابت نمیماند و به هندسهٔ میکروسکوپی و سطح وابستهاست . به همین دلیل لایههای سطحی فلز بسیار فعالند . سطح فلز همیشه با اکسیدهای مایع و گاز پوشانیده شده و هرگاه این سطح بطور ایده آل و در فشار کمتر از mmhg ۹- ۱۰ کاملاً تمیز شود ، سطح فلز عاری از این اضافات میشود . این سطح تمیز ، مدت زیادی نمیتواند دوام داشته باشد . تشکیل اتصال قوی مابین فلزات ، در متد پیوند سرد ، با تغییر شکل دو جانبه و طی سه مرحله انجام میپذیرد . در طی مرحلهٔ اول؛ سطوح مورد اتصال بایستی بطور کامل به هم نزدیک شوند . در مرحلهٔ دوم ؛ metallic contact یا اتصال بین فلزی شکل میگیرد . در مرحلهٔ سوم ؛ یک اتصال جوش قوی تولید میگردد . اکنون این مراحل به تفصیل مورد بحث قرار میگیرد : زمانیکه دو سطح کنار هم قرار داده میشوند ، ناهمواریهای میکروسکوپی و نقاط موجی شکل تشکیل مییابند . ابتدا این دو قطعه یکدیگر را در نقاط منفرد بالاتر از سطح ، لمس میکنند . برای تماس بیشتر به مساحت زیادتری نیاز است . این عمل بوسیلهٔ وارد آوردن نیرو انجام میشود . به دلیل وجود لایههای سخت و نازک اکسیدی ( Fragile ) میزان نیرو بسیار بالا خواهد بود . البته اگر نیرو کافی نباشد اتصالی بدست میآید که پلاستیستهٔ آن کم و استحکام ضربهای آن ناکافیست . لایههای نازک روغنی یا ارگانیک آلی ، اثر به مراتب زیان آورتری دارند و اگر مقدارشان زیاد شود بطور کامل از ایجاد پیوند جلوگیری میکند و حتماً بوسیلهٔ حلالهای قوی بایستی آنها را زدود . مرحلهٔ دوم هنگامی رخ میدهد که مساحت اتصال فلزی بین دو قطعه زیاد میشود و بلورهای مشترکی بین دو سطح تولید میگردد. زمانیکه تماس فلزی کاملاً شروع به شکل گیری میکند ، بلورها و شبکههای کریستالی ، توسط لایههای نازک از یک ترکیب پیچیده جدا میشوند . در حین این تغییر ، سطح فشرده شده در تماس با اتمسفر نیستند و هیچ گونه لایهٔ نازک دیگری نمیتواند شکل بگیرد . بنابراین فیلمهای شکننده از میان رفته و لایههای مایع و گاز بخشی به بیرون رفته و بخشی جذب فلز شده به آن نفوذ میکنند . در مرحلهٔ سوم ، پروسه شامل حرکتهای مختلف ذرات ناشی از نفوذ است و به زمان کافی جهت تکمیل این مرحله ،احتیاج است .
فرآیندهای اکسی فیول گروه فرآیندهای جوشکاری است که در آن، اتصال با ذوب شدن توسط یک یا چند شعله گاز، با اعمال فشار یا بدون آن، با کاربرد فلز پر کننده یا بدون آن انجام میشود.
فرآیند جوشکاری با لیزر در این روش از پرتوی لیزر برای جوشکاری استفاده میشود.در جوشکاری لیزری دانسیته انرژی فراهم شده بسیار بیشتر از جوشکاری با قوس آرگون یا با مشعلهای اکسی اسیتیلن است. از لیزرهای مختلفی میتوان برای جوشکاری استفاده کرد مانند لیزر گاز کربنیکی یا لیزر یاقوتی ولی باید دقت کرد که انرژی پرتو آنقدر زیاد نباشد که باعث تبخیر فلز شود. به طور عمده از دو نوع لیزر در جوشکاری و برشکاری استفاده میشود،لیزرهای جامد مثل Ruby و ND:YAG و لیزرهای گاز مثل لیزر CO2 . لیزر Ruby از یک کریستال استوانهای شکل Ruby (یک نوع اکسید آلومینیوم است که ذرات کرم در آن پخش شدهاند) تشکیل شدهاست . دو سر آن کاملا صیقلی و آینهای شده و در یک سر آن یک سوراخ ریز برای خروج اشعه لیزر وجود دارد . در اطراف این کریستال لامپ گزنون قرار دارد که لامپ فوق برای کار در سرعت حدود ۱۰۰۰ فلاش در ثانیه طراحی شدهاست . لامپ گزنون با استفاده از یک خازن که حدود ۱۰۰۰ بار در ثانیه شارژ و تخلیه شده فلاش میزند و هنگامی که کریستال Ruby تحت تاثیر این فلاشها قرار بگیرد اتمهای کرم داخل شبکه کریستالی تحریک شده و در اثر این تحریک امواج نور از خود ساطع میکنند و با باز تابش این اشعهها در سطوح صیقلی و تقویت آنها اشعه لیزر شکل میگیرد . اشعه لیزر شکل گرفته از سوراخ ریز خارج شده و سپس به وسیله یک عدسی بر روی قطعه کار متمرکز شده که بر اثر برخورد انرژی بسیار زیادی در سطح کوچکی آزاد میکند که باعث ذوب و بخار شدن قطعه و انجام عمل ذوب میشود . محدودیت لیزر Ruby پیوسته نبودن اشعه آن است در حالیکه انرژی خروجی ان بیشتر از لیزرهای گاز مانند لیزر CO2 است که در آنها اشعه حاصله پیوستهاست، از لیزر CO2 بیشتر به منظور برش استفاده میشود و از لیزر ND:YAG بیشتر برای جوشکاری آلومینیوم استفاده میشود . از انجا که در این روش مقدار اعظمی از انرژی مصرف شده به گرما تبدیل میشود این سیستم باید به یک سیستم خنک کننده مجهز باشد . در جوشکاری لیزر دو روش عمده برای جوشکاری وجود دارد: حرکت دادن سریع قطعه زیر اشعه است تا که یک جوش پیوسته شکل بگیرد. جوش دادن با چند سری پرتاب اشعه که این روش مرسوم تر است. در جوشکاری لیزر تمامی عملیات ذوب و انجماد در چند میکروثانیه انجام میگیرد و به خاطر کوتاه بودن این زمان هیچ واکنشی بین فلز مذاب و اتمسفر انجام نخواهد شد و از این رو گاز محافظ لازم ندارد . بهترین طرح اتصال برای این نوع جوشکاری طرح اتصال لب به لب میباشد و با توجه به محدودیت ضخامت در آن میتوان ازطرح اتصالهای T یا اتصال گوشه نیز استفاده نمود.
- مزایای جوشکاری لیزر : حوضچه مذاب میتواند داخل یک محیط شفاف ایجاد شود ( باعکس روشهای معمولی که همیشه حوضچه مذاب در سطح خارجی آنها ایجاد میشود ) . محدوده بسیار وسیعی از مواد را مانند آلیاژها با نقاط ذوب فوق العاده بالا ، مواد غیر همجنس و … را میتوان به یکدیگر جوش داد . در این روش میتوان مکانهای غیر قابل دسترسی را جوشکاری نمود . از آنجا که هیچ الکترودی برای این منظور استفاده نمیشود نیازی به جریانهای بالا برای جوشکاری نیست . اشعه لیزر نیاز به هیچگونه گاز محافظ یا محیط خلاء برای عملکرد ندارد . به خاطر تمرکز بالای اشعه منطقه HAZ بسیار باریکی در جوش تشکیل میشود . جوشکاری لیزر نسبت به سایر روشهای جوشکاری تمیز تر است .
- محدودیتها و معایب جوشکاری لیزر : سیستمهای جوشکاری لیزر نسبت به سایر دستگاههای سنتی جوشکاری بسیار گران هستند و در ضمن لیزرهایی مانند Ruby به خاطر پالسی بودن اکثر آنها از سرعت پیشروی کمی برخوردارند ( ۲۵ تا ۲۵۰ میلیمتر در دقیقه ) . همچنین این نوع جوشکاری دارای محدودیت عمق نیز میباشد . از اشعه لیزر هم به منظور برش و هم به منظور جوشکاری استفاده میشود . این نوع جوشکاری در اتصال قطعات بسیار کوچک الکترونیکی و در سایر میکرو اتصالها کاربرد دارد . از اشعه لیزر میتوان در جوش دادن آلیاژها و سوپر الیاژها با نقطه ذوب بالا و برای جوش دادن فلزات غیر همجنس استفاده نمود . به طور کلی این روش جوشکاری برای استفادههای دقیق و حساس استفاده میشود . از این روش میتوان در صنعت اتومبیل و مونتاژ از آن برای جوش دادن درزهای بلند استفاده نمود.
فرآیند جوشکاری با باریکه الکترونی کاربرد جریانی از الکترونها است که با ولتاژ زیاد شتاب داده شدهاند و به صورت باریکهای متمرکز به عنوان منبع حرارتی جوشکاری به کار میروند. به دلیل دانسیته بالای انرژی در این پرتو منطقه تف دیده بسیار باریک میباشد. و جوشی با کیفیت مناسب به دست میآید. این فرآیند به عنوان اولین فرآیند جوشکاری بکار رفته برای ساخت بدنه جنگنده ها استفاده شد. بال جنگنده افسانهای F14 یا Tomcat با استفاده از این فرآیند ساخته شده است.
کنترل کیفیت و بازرسی طبق طبقه بندی استانداردهای مدیریت کیفیت (ISO 9000 ) جوشکاری جزو فرآیندهای ویژه طبقه بندی شدهاست. که این نشان دهنده این است که برای کنترل کیفیت و تضمین کیفیت این فرآیند ویژه میباید پیش بینیهای خاصی انجام داد.
ایمنی و بهداشت کار در جوشکاری در مرحله اول استفاده از عینک محافظ تحت هیچ شرایطی نباید فراموش شود. در صورت انجام عملیات جوش کاری در محیط بسته بخارات حاصل باید به خوبی تهویه شود. در محیط باز هم باید احتیاط لازم در مورد این بخارات به عمل اید. جهت جلوگیری از آسیب چشم دیگران بهتر است در صورت امکان محل انجام جوشکاری بارتیشن بندی شود. کابل ها نباید در مسیر رفت و آمد یا در معرض ضربه باشد.
مراکز و موسسههای جوشکاری انجمن جوشکاری آمریکا AWS انستیتو بین المللی جوشکاری IIW انیستیتو جوشکاری ادیسون EWI مرکز جهانی اتصال مواد TWI انیستیتو جوشکاری هُبارت
منابع ALTHOUSE, ANDEREW DANEL MODERN WELDING, METAL HANDBOOK ۸th EDITION VOL.۶ WELDING&BRAZING فرهنگ جوشکاری نوشته: پرویز فرهنگ، امیر حسین کوکبی |
اصول عملیات درجوش زیر پودری جریان الکتریکی از قوس و حوضچه مذاب جوش که ترکیبی از فلاکس مذاب و فلزجوش مذاب است می گذرد. فلاکس مذاب معمولا، هادی خوب جریان الکتریسته است، در حالی که فلاکس سرد هادی نیست. پودر جوش می تواند اکسیدزداها و ناخالصی زداهایی که با فلز جوش واکنش شیمیایی می دهند را نیز تامین کند علاوه براینکه یک لایه محافظ ایجاد می کند. فلاکس های جوش زیر پودری فولادهای آلیاژی همچنین می توانند حاوی عناصر آلیاژی برای بهبود ترکیب شیمیایی فلز جوش باشند. جریان الکتریکی از یک ژنراتور (ترانسفورماتور یا رکتی فایر) تامین شده، از اتصالات عبور می کند تا قوسی را بین الکترود و فلز پایه بر قرار کند را ذوب می کند که حوضچه مذاب را برای پرکردن اتصال تشکیل دهند. درکلیه انواع تجهیزات، غلطک های هدایت با نیروی مکانیکی بطور پیوسته سیم الکترود مصرفی فلزی را از میان لوله تماس (نازل) و توده فلاکس به اتصالی که باید جوش شود می راند. سیم الکترود عموما یک فولاد کم کربن با ترکیب شیمیایی دقیق که در یک قرقره یا بشکه پیچیده شده می باشد. سیم الکترود در منطقه جوش ذوب شده و در طول اتصال رسوب می کند. فلاکس دانه ای در جلوی قوس ریخته شده و پس از انجماد فلز جوش، فلاکس ذوب نشده توسط سیستم مکش جمع کننده برای استفاده مجدد جمع آوری می شود. در جوش خودکار بازیابی فلاکس مجموعه ای از تجهیزات و یک لوله بازیابی فلاکس که درست پس از لوله تماس قرار گرفته است می باشد. جوش زیر پودری به هر دو روش نیمه خودکار و خودکار قابل انجام بوده و روش خودکار بخاطر مزایا بیشتر، استفاده گسترده تر دارد. در روش نیمه خودکار جوشکار بصورت دستی یک تفنگ جوشکاری (به انضمام مخزن فلاکس) که فلاکس و الکترود را به محل اتصال تغذیه می کند را هدایت کرده و خودش سرعت حرکت را کنترل می کند. در روش جوش کاملا خودکار دستگاه بصورت خودکار الکترود و فلاکس را در طول مسیر جوش تغذیه و هدایت کرده و نرخ رسوب را کنترل می کند. در کاربردهای خاصی جوش خودکار زیر پودری دو یا چند الکترود بصورت متوالی در یک اتصال تغذیه می شوند. الکترودها ممکن است کنار یکدیگر بوده و به یک حوضچه تغذیه شوند یا اینکه به اندازه کافی فاصله داشته تا پس از انجماد یکی حوضچه دیگری تشکیل شود و مستقل منجمد شوند. روش جدیدتر جوش قوس های پشت سرهم است که جوش چند پاس را دریک شیار اتصال برای افزایش سرعت حرکت و نرخ رسوب جوشکاری تامین می کند. مزایا و محدودیت ها روش های خودکار و نیمه خودکار جوش زیر پودری در مقایسه با سایر روش های جوشکاری مزایا و معایب زیر را دارند: اتصالات را می توان با شیار کم عمق آماده نموده که باعث مصرف کمترفلز پرکننده می شود (در برخی کاربردها نیازی به شیار برای اتصالات بین ورق های با ضخامت کمتر از 4/1 نیست). پوشش برای حفاظت اپراتور از قوس نیاز نیست، اگرچه حفاظت چشمان اپراتور بخاطر احتمال پرتاب جرقه جوش توصیه می شود. جوش را می توان با سرعت حرکت و نرخ رسوب بالا و برروی سطح صاف یا استوانه ای یا لوله و از نظر تئوری با هر اندازه و ضخامتی انجام داد. این روش برای سخت کردن سطحی نیز مناسب است. فلاکس به عنوان اکسیدزدا و آخال زدا برای خارج کردن ترکیبات ناخواسته از حوضچه جوش عمل می کند تا جوش سالم و باخواص مکانیکی مناسب ایجاد کند. سیم های الکترود ارزان برای جوش فولادهای غیرآلیاژی و کم کربن استفاده می شوند. (معمولا سیم های فولادی کم کربن بدون پوشش یا با پوشش نازک مسی برای هدایت بهتر و جلوگیری از خوردگی می باشند). جوش زیر پودری را می توان در زیر وزش بادهای نسبتا شدید جوشکاری نمود. ذرات فلاکس حفاظت بهتری انجام می دهند تا پوشش الکترود در روش جوشکاری الکترود دستی. محدودیتهای جوش زیر پودری که برخی در روش های دیگر جوشکاری نیز وجود دارند به شرح زیر است: پودر جوش ممکن است به آلودگی هایی آغشته شود که باعث تخلخل جوش شوند. برای دستیابی به یک جوش خوب فلز پایه باید، یکنواخت بدون پوسته اکسیدی، زنگ، غبار و روغن و سایر آلودگی ها باشد. جداشدن سرباره از جوش در برخی موارد به سختی صورت می گیرد. در جوش های چند پاس پس از هر عبور باید سرباره جوش برداشته شود تا از باقی ماندنش درون فلز جوش جلوگیری شود. این روش معمولا برای جوش فلزات با ضخامت کمتر از 3/16، بخاطر Burn Through مناسب نمی باشد. مگر در کاربردهای خاص شدیدا به مسطح بودن وضعیت جوشکاری محدود است، زیرا مسطح بودن و افقی بودن وضعیت برای جلوگیری از ریختن فلاکس لازم است. فلزات مناسب جوش زیر پودری جوش زیر پودری برای همه فلزات و آلیاژها مناسب نیست. برای سهولت فلزات و آلیاژها را می توان با توجه به مناسب بودن آنها برای جوش زیر پودری به سه دسته تقسیم کرد: فلزات بسیارمناسب فلزات اندکی مناسب فلزات غیرمناسب فلزات بسیار مناسب: جوش زیر پودری بیشترین استفاده را در جوش فولادهای غیرآلیاژی فولاد ساده کم کربن دارد. اغلب مثال های این مقاله به این فولادها مربوط است، که محدوده تنش تسلیم آنها حدود 45000 تا 85000 Psi است و معمولا با فلاکس و الکترود AWS 15.17 – 69 (مشخصات فنی فلاکس ها و الکترودهای فولادهای آرام ساده برای جوش قوس زیر پودری) جوش می شوند. فولادهای کربن متوسط و کم آلیاژ ساختمانی در رده فولادهای مناسب جوش زیر پودری هستند اگرچه اغلب به پیش گرم، پس گرم و استفاده از فلاکس و سیم الکترودهای ویژه نیاز دارند. فولاد ضد زنگ، فولاد کربنی آلیاژی قابل سخت شدن، و فولاد ساختمانی پراستحکام نیز با روش جوش زیر پودری جوشکاری می شوند. جوش زیر پودری همچنین برای ایجاد پوشش های مقاوم به سایش برای موقعیت هایی که تحت سایش هستند بکار می رود. فلزات اندکی مناسب : برخی فلزات و آلیاژهایی را که می شود به روش جوش زیر پودری جوش داد، بیشتر با روش هایی جوش می دهند که منطقه حرارت داده شده باریک تر باشد. برخی فولادهای ساختمانی پراستحکام کم کربن جزء این گروه هستند زیرا استحکام ضربه و کشش مورد نیاز در روش جوش زیر پودری به سختی بدست می آیند. فولادهای پرکربن، فولادهای مار تنزیتی، و مس و آلیاژهای مس نیز جزء این گروه هستند. فلزات نامناسب: چدن را معمولا نمی توان به روش جوش زیر پودری جوش داد، زیرا نمی تواند تنش های حرارتی ناشی از گرمای ورودی را تحمل کند. مسائلی که در جوش فولاد آستنیته منگنزی و فولاد ابزار پرکربن رخ می دهند جوشکاری آنها را با هر روش معمولی دشوار می سازد. آلیاژهای آلومینیوم و آلیاژهای منیزیوم را نمی توان به روش زیر پودری جوش داد زیرا فلاکس مناسب برای آن پیدا نمی شود. سرب و روی بخاطر نقطه ذوب پایین مناسب جوش زیر پودری نیستند. تیتانیوم در کاربردهای آزمایشگاهی به روش زیر پودری جوشکاری شده ولی فلاکس مناسب برای جوش آن تاکنون ارائه نشده است. جنبه های متالورژیک سه ویژگی جوش زیر پودری در جریان های بالا نیازمند توجه ویژه است :
تغییرات ریز ساختار افزایش تغییرات ساختار فلز پایه به عوامل زیر وابسته است:
منطقه بعدی 1700 تا 1400 فارنهایت، منطقه ای است که فولاد باز پخت شده و به مقدار قابل توجهی نرم تر از منطقه مجاور جوش است. فلز پایه دورتر از این منطقه نیز تغییر نکرده باقی می ماند. اندکی کاربید کروی شده بخاطر باقی ماندن در حدود 1330 فارنهایت، ممکن است ایجاد شود. پیش گرم و پس گرم کردن اصول پیش گرم کردن و پس گرم کردن برای جوش زیر پودری مشابه سایر روش های جوشکاری است. پیش گرم و پس گرم برای فولادهای سختی پذیر، مخصوصا فولادهایی که کربن آنها از حدود 0.3% و ضخامت آنها بیشتر از 4/3 باشد بکار می رود. کاهش سرعت سردشدن که در اثر پیش گرم رخ می دهد، زمان ماندگاری در دمای بالاتر از شروع تغییر حالت مارتنزیتی را افزایش می دهد و لذا تغییر حالت آستنیت به پرلیت ظریف تر بجای مارتنزیت سخت را افزایش می دهد. در منطقه جوشی که پیش گرم شده نسبت به جوش پیش گرم نشده احتمال کمتری وجود دارد که فاز سخت تشکیل شود. همچنین بخاطر سرعت سرد شدن کمتر در فولاد های پیش گرم شده، خطر ترکیدگی جوش و تنش های حرارتی کاهش پیدا می کند. پس گرم کردن هنگام نیاز به تنش زدایی حرارتی، بازپخت، نرمالایز کردن یا تمپرکردن بکارمی رود. منابغ تغذیه منابع تغذیه جوش زیر پودری عبارتند از:
سیستم های تغذیه سیم جوش تجهیز تغذیه سیم الکترود جوش زیر پودری از دو نوع سیستم کنترلی برای کنترل سرعت تغذیه سیم (سیستم های حساس به ولتاژ و سیستم های سرعت ثابت) استفاده می کنند. سیستم های کنترلی حساس ولتاژ با منبع تغذیه های جریان ثابت و سیستم های کنترل سرعت ثابت با منبع تغذیه های ولتاژ ثابت استفاده می شوند سیم الکترود جوش زیر پودری سیم های الکترود جوش زیر پودری فولاد در اندازه های مختلف تولید می شوند. پوشش نازکی از مس برای بهبود هدایت الکتریکی و بالا بردن مقاومت در برابرخوردگی بر روی سیم ایجاد می شود.ترکیب شیمیائی سیم الکترود به ترکیب شیمیائی فلز جوش و خواص مکانیکی و انتخاب نوع خاص الکترود و ترکیب آن به جنس فلز قطعه و نوع فلاکس وابسته است. برای رسیدن به نرخ رسوب بالاتر می توان از دو یا چند الکترود نازک تر بجای یک الکترود ضخیم تر استفاده کرد. کاهش قطر الکترود باعث افزایش چگالی جریان و فشار پلاسما جهت و افزیش عمق نفوذ و باریک شدن باند جوش می شود. الف) همه الکترودها علاوه برمقادیر جدول حداکثر دارای 0.035% گوگرد، 0.03% فسفر، 0.15% مس (غیراز پوشش) و % 0.05% سایر عناصر می باشند. ب) به علاوه حاوی 0.05 – 0.15 % تیتانیوم، 0.02 – 0.12% زیرکونینوم، 0.05% - 0.15% آلومینیوم و تا 0.5% سایر عناصر نیز می باشد. ساده ترین روش برای جلوگیری از تشکیل پرلیت و فریت گوشه دار استفاده از حدود 0.5% مولیبدن و 0.02% بر در ترکیب فولاد است، که با کاهش آهنگ تشکیل محصولات دگرگونی در دمای بالا باعث ایجاد فاز بینیت می شود. لذا استحکام کششی و تسلیم را افزایش می دهد. پودرهای جوش زیر پودری تجهیزات حمل فلاکس و سازه نگهدارنده مخزن پودر، اتصالات دیگر و همچنین صفحه نوار یا حلقه پشتبند نیز مورد نیاز می باشد. پودرهای جوش زیر پودری به سه شکل وجود دارند:
پودرهای چسبیده شده: برای تولید پودرهای چسبیده شده مواد خام تا اندازه D * 100 آسیاب می شوند. بصورت خشک با هم مخلوط شده و با افزودن سیلیکات پتاسیم یا سیلیکات سدیم به هم چسبیده می شوند. مخلوط حاصل به شکل گلوله درآمده و در دمای پایین خشک می شوند و بصورت مکانیکی خرد شده و دانه بندی می شوند. مزایا :بخاطر دمای تولید پایین، اکسید زداها و فرو آلیاژها دراین روش قابل افزوده شدن هستند.*چگالی پودر پایین تر است و امکان استفاده از لایه ضخیم تر فلاکس برروی منطقه جوش وجود دارد. -سرباره ایجاد شده بر روی جوش پس از سردشدن بهتر جدا می شود محدودیت : محدودیت های مهم این روش عدم امکان جداکردن خاکه بدون تغییر در ترکیب شیمیایی و حساسیت بالا به جذب رطوبت است. پودرهای آگلومره : روش تولید مشابه پودرهای چسبیده شده است غیر از اینکه از یک الک سرامیکی استفاده می شود. در این نوع پودر نیز برای استفاده از اکسید زداها و فرو آلیاژها بخاطر دمای Curing بالای الک (oc 1400) مانند پودرهای ترکیب شده محدودیت وجود دارد. دانه بندی: اندازه دانه های پودر جوش بخاطر تاثیر برمصرف بهینه پودر جوش در جریان های جوش مختلف حائض اهمیت است. در جریان های بیشتر از 1500 آمپر باید از درصد ذرات ریز بیشتر و ذرات درشت کمتر استفاده کرد. پودرهای چسبیده شده که در جریان های کمتر استفاده می شوند بستگی کمتری به اندازه ذرات دارند و عمدتا در یک سایز تولید می شوند. حداکثر جریان مناسب برای این نوع پودر 800 تا 1000 آمپر است. در حالی که برخی انواع پودر ترکیب شده (انواع سیلیکات کلیسم اصلاح شده ) را تا 2000 آمپر نیز می توان بکار برد. ترکیب پودرهای جوش در زمان پیشرفت فرایند جوش زیر پودری در اواسط دهه 1930 پودرهای ترکیب شده حاوی ترکیبات سیلیکاتی استفاده می شدند که عمدتا حاوی آلومینا سیلیکات منیزیم، کلسیم و منگنز بودند. برای تنظیم محدوده ذوب و ساختار آن از دیاگرام MnO – SiO2 استفاده می شد. نتیجه جوشکاری با پودرهای چسبیده شده تقویت شده، پس از ذوب و انجماد جوش در فلز جوش مشابه پودر ترکیب شده است. فروسیلیم و اکسید منگنز و سیلسیم فلاکس ترکیب می شوند. لذا مقدار MnO نسبت به SiO2 که برای جوش زیر پودری مناسب است در قسمت جوش باقی می ماند. انواع پودرهایی که توضیح داده شده برای دستیابی به خواص پیشرفته تر و هزینه اقتصادی تر و ظاهر مناسب تر گرده جوش در مقادیر کمتر منگنز اصلاح شده اند. برخی ترکیبات پودرها با بازیسیته بیشتر (که مقادیر CaF2، CaO دارند) خواص مکانیکی بهتری در فلز جوش ارائه می دهند و افزودن تیتانیوم پایداری قوس بیشتر و اکسید فلزات خاص ظاهر جوش را در فولادهای آلیاژی بهبود می دهند. برای رسیدن به ظاهر جوش مناسب در جوشکاری پرسرعت ورق ها خواص دمایی گرانروی فلاکس را باید تنظیم کرد. فلاکس های کاربردهای خاص برای منظورهای خاص طراحی می شوند. مقایسه پودر جوش زیر پودری با پوشش الکترود پودرهای جوش زیر پودری در مقایسه با مواد بکار رفته در پوشش الکترودهای جوشکاری الکترود دستی چند تفاوت عمده دارند. فلاکس های جوش الکترود دستی حاوی ترکیباتی مانند سلولز برای ایجاد گاز محافظ است. همچنین ترکیباتی با تابع کاری پایین مانند اکسید سدیم و اکسید پتاسیم برای کمک به شروع قوس و پایداری آن و مواد دیگری برای تقویت نفوذ، نرخ ذوب و استفاده از قطب های مختلف جریان به پوشش الکترود اضافه شوند. که پودرهای جوش زیر پودری غالبا به این ترکیبات نیازی ندارند، زیرا وجود سرباره مذاب و دانه های کروی پودر از قوس حفاظت کرده و نیازی به گاز محافظ نیست. وجود ترکیبات سیلیس و فلوراید عموما پایداری مطلوب قوس را تضمین می کند و حداقل %10 فلوراید کلسیم برای بهبود سیالیست فلاکس مذاب به سیلیکات های فلزی پودر اضافه می شوند. پوشش های الکترود های جوش قوس الکترود دستی بخاطر اینکه باید قابل اکسترود باشد و سایر ملزومات تولید دارای فرمول پیچیده اند وبرعکس آن پودرهای جوش زیر پودری ازترکیبات معدنی ساده و از سیستم های دوتایی، سه تایی و یا چهار تایی انتخاب می شوند. رایج ترین فلاکس ها از سیستم MnO – SiO2 و یا CaO - SiO2 تشکیل شده اند که می توانند با اکسیدهای آلومینیم، منیزیم، زیرکونیوم و تیتانیوم ترکیب شود و فلاکس های کاربردهای خاص را به وجود آورند. فلاکس های الکترودهای پوشش و فلاکس های جوش زیر پودری به روش های متفاوتی دسته بندی می شوند. استاندارد AWS A5.1-6 الکترودها را برحسب نوع مواد پوشش فلاکس دسته بندی می کند. و استاندارد A 5.1 7-69 برای دسته بندی پودر جوش زیر پودری به طبیعت شیمیایی فلاکس ارتباطی ندارد فقط به خواص مکانیکی رسوب جوش که با الکترود مخصوص به وجود می آید مربوط است. در عمل بیشتر الکترود و فلاکس جوش زیر پودری از روی ظاهر جوش انتخاب می شوند تا در نظر گرفتن جنبه های فنی. نقطه ذوب و نرخ ذوب پودرهای جوش یک پودر جوش موثر باید دردمای بالا به خوبی سیال باشد و لایه روان و محافظ برروی فلز جوش ایجاد نماید و آنرا از اکسید شدن حفاظت کرده ولی در دمای اتاق ترد باشد و به آسانی از روی جوش جدا شود. نقطه ذوب و چگالی فلاکس نیز باید کمتراز فلز جوش باشد که گازهای تولید شده بین فلز و سرباره بتوانند وارد سرباره شوند و برای تکمیل وظیفه سرباره سازی باید فلاکس پس از تکمیل انجماد فلز جوش منجمد شود. لذا حد بالایی دامنه ذوب پودر جوش زیر پودری حدود 1300 درجه سلسیوس می باشد. مقدار فلاکس ذوب شده در هر دقیقه به ولتاژ و جریان جوش بستگی دارد و در جریان ثابت مقدار پودر ذوب شده در هر دقیقه با افزایش ولتاژ جوش افزایش می یابد. در عمل معمولا وزن فلاکس ذوب شده و وزن الکترود ذوب شده برابرند. تاثیر فلاکس بر ترکیب فلز جوش واکنش های بین فلز جوش مذاب و پودر جوش ذوب شده در ضمن جوشکاری زیر پودری شبیه واکنش بین مذاب و سرباره در فولاد سازی است. و لذا وظیفه سرباره مذاب کاهش ناخالصی های فلز جوش و تامین عناصری مانند منگنز و سیلیکون برای فلز جوش است. چنانچه در قسمت الف شکل 4 مشاهده می شود با افزایش MnO درسرباره تا حدود 10 درصد مقدار منگنز فلز جوش افزایش سریع دارد که به تدریج مقدار این افزایش کم می شود. لذا بسیاری از فلاکس ها حاوی حدود %10 اکسید منگنز است. رابطه مقدار SiO2 موجود در فلاکس و مقدارSi فلز جوش متفاوت است و تا هنگامی که SiO2 موجود در سرباره حدود %40 باشد سیلیسم اندکی جذب نمی شود لذا فلاکس های تجاری و مخصوصا فلاکس هایی که برای جوش های با چند پاس تولید می شوند مقدار زیاد حدود %40، SiO2 دارند. برخی فلاکس ها می توانند فروآلیاژها را برای جوش تامین کنند. اکسیدهای فلزی موجود در پودر مانند NiO، MnO3، Cr2O3 باعث انتقال عناصر فلزی از سرباره به فلز جوش شوند. مقدار Cr2O3 فلاکس، ترکیب الکترود، ترکیب فلز پایه ای که بر روی آن فلز جوش رسوب می کند بر مقدار سیلیسم باقی مانده در فلز جوش تاثیر می گذارند.همه عواملی که زمان واکنش فلز - سرباره یا متوسط دمای حوضچه جوش را تغییر دهد، برتوزیع عناصر آلیاژی باقی مانده در فلز جوش تاثیر خواهد گذاشت. در شرایط طبیعی جوشکاری، سرعت حرکت مهمترین عامل در رسوب عناصر آلیاژی است و نیز افزایش ولتاژ عموما باعث افزایش عناصر فلزی منتقل شده به فلز جوش می شود. گرانروی و هدایت سرباره ها برای اینکه فلاکس در برابر نفوذ گازهای اتمسفری مقاوم باشد باید گرانروی آن در منطقه جوش به اندازه کافی بالا باشد که در ضمن بتواند از سرریز شدن فلز مذاب و حرکت آن به سمت جلوی قوس که ممکن است باعث حبس سرباره در زیر فلز جوش مذاب شود جلوگیری کند. از طرف دیگر به اندازه کافی سیال باشد که حل شدن سریع اجزاء غیر فلزی مانند اکسیدها و خارج شدن گازها از فلز مذاب را ممکن سازد. ویسکوزیته فلاکس مذاب در دمای 1400 oC در حدود 2 تا 7 poises می باشد. دانه های پودر جوش در دمای اتاق عایق الکتریکی هستند و مقاومت آنها با افزایش دما کاهش می یابد و سرباره های مذاب در دمای حوضچه جوش بسیار هادی هستند. روابط الکتریکی :روابط الکتریکی منطقه جوش توسط نوع فلاکس و روش جوشکاری تعیین می شود. بررسی های نوسان نگاری، اسپکتوگرافیک و رادیو گرافیک، قوس طبیعی را در هنگام جوشکاری زیر پودری نشان می دهند. برای محاسبه روابط الکتریکی ثبت ولتاژ در بررسی های نوسان نگاری مهمترین عامل است. شرایط جوش: دانسیته جریان الکتریسته در سیم الکترود جوش زیر پودری در مقایسه با مقدار آن در جوش الکترود دستی چندین برابر بزرگتر و نرخ ذوب و سرعت جوشکاری نیز بیشتر است. ارتباط بین ولتاژ معمول تجهیزات صنعتی و جریان نشان داده شده است. برای این داده ها فرض شده که هر یک از تنظیمات جریان جوشکاری دامنه ای حدود 10 ولت دارد، که در این محدوده جوش سالم در ولتاژهای بالاتر گرده جوش پهن تر و در ولتاژهای پایین تر گرده جوش باریکتر می دهند. در ولتاژ جوشکاری و مجموع و پتانسیل کاتد و آند با افزایش جریان جوشکاری افزایش می یابند. و در هر جریانی با کاهش ولتاژ و یا مجموع پتانسیل کاتد و آند مقدار پودر ذوب شده کاهش می یابد و به صفر نزدیک می شود. خطی نبودن کاهش پتانسل کاتد و آند نشان دهنده وجود هدایت الکترولیتی است. حداکثر سرعت جوشکاری قابل استفاده برای جوشکاری بدون عیب و رفتار پایدار، با جریان جوشکاری تغییر می کند. هنگامی Undercut رخ می دهد که جوشکاری در سمت راست خط مورب انجام شود. مثلا جوش تک پاس را در ورق های به ضخامت 1 اینچ را می توان با 1500 آمپر و با سرعت 10 اینچ در دقیقه جوش داد. فاصله نازل : فاصله بین سطح فلز پایه و نوک لوله تماس (نازل) در گرمای وارده به جوش و لذا نرخ ذوب تاثیر می گذارد. زیرا نرخ ذوب الکترود جوش مجموع ذوب شدن براثر گرمای قوس و ذوب شدن براثر گرمای مقاومت الکتریکی (I2R) در طول الکترودی که از نازل خارج شده است می باشد. بسته به طرح اتصال و طول قوس، انتهای الکترود ممکن است بالاتر، هم سطح یا زیر سطح بالایی فلز پایه باشد. نرخ ذوب ناشی از گرمای مقاومتی I2R در الکترود تابع نمایی از طول الکترود بین نازل و قطعه کار، جریان و قطر الکترود می باشد. افزایش مقدار ذوب بر اثر گرمای مقاومتی به شدت جریان و طول الکترود خارج از نازل وابسته است، که هر دو تابعی از قطر الکترود می باشند نفوذ :نفوذ، عمق تشکیل رسوب جوش درشیار یا سطح فلز پایه است که معمولا فاصله زیرسطح اصلی است، که فلز آن ذوب شده است. ولتاژ کم اهمیت ترین و جریان جوشکاری مهمترین عامل در محاسبه نفوذ و سرعت جوشکاری است. تاثیر متقابل ولتاژ، جریان و سرعت حرکت جوش بر مقدار نفوذ که از چندین آزمایش زیر پودری بدست آمده اند. برای سایر فرایندهای جوش قوس، GMAW و SMAW نیز رابطه خطی مشابهی بدست آمده است. شیب این خط مورب در فرایندهای مختلف متفاوت است و بیشترین مقدار آن مربوط به فرایندهایی است که از گازهای محافظ هلیم یا CO2 استفاده می کنند. ظرفیت حرارتی فلز جوش مذاب برای محاسبات گرمای ورودی و سرعت سردشدن دارای اهمیت هستند و با مقطع عرضی گرده جوش که نشان دهنده مقدار فلزی است که برای ذوب شدن گرم می شود، متناسب است. بازده تولید برای هر روش جوشکاری به اندازه گیری این ناحیه مربوط می شود. ارتفاع گرده جوش با افزایش جریان جوشکاری و کاهش سرعت حرکت جوشکاری افزایش می یابد و تاثیر ولتاژ برگرده جوش ناچیز است. رقت: نسبت فلز پایه به رسوب فلز جوش عامل مهم در کنترل خواص مکانیکی فلز جوش است. رقت فلز جوش از فلز پایه را می توان از روی نسبت حجم گرده (سطح مقطع عرضی درطول گرده) بر فلز پایه حساب کرد. رقت فلز جوش از فلز پایه با افزایش نسبت جریان به سرعت جوشکاری افزایش می یابد. با افزایش ولتاژ نرخ ذوب الکترود اندکی کمتر شده و لذا باعث افزایش رقت می شود. بازیسیته پودر جوش :اندیس بازی پودر جوش (BI) معیار دیگری برای طبقه بندی پودرهای جوش است که مقدار اسیدی بودن روش تولید فلاکس را و همچنین فعال ، خنثی یا آلیاژی بودن فلاکس را مشخص می کند. اندیس بازی نسبت مجموع اکسیدهای فلزی با پیوند سخت به مجموع اکسیدهای فلزی با پیوند سست است. اندیس بازی برآوردی از مقدار اکسیژن فلز جوش است و لذا می تواند برای بیان خواص فلز جوش بکار رود. پودرهای جوش با بازیسیته بیشتر تمایل به داشتن اکسیژن کمتر و استحکام بالاتر در فلز جوش دارند. در حالی که پودرهای جوش اسیدی، جوشی با اکسیژن بیشتر ، ریز ساختار درشت تر و با مقاومت کمتر در مقابل تورق تولید می کنند.پودرهای جوشی با اندیس بازی بیشتر از 5/1 پودر جوش بازی و با اندیس بازی کمتر از یک ، پودر جوش اسیدی شناخته می شوند. پودرهای جوش اسیدی معمولا برای جوش های تک پاس مناسبند و رفتار جوش مناسب و در گرده جوش خاصیت ترکنندگی خوب دارند.علاوه برآن پودرهای جوش اسیدی در مقایسه با پودرهای جوش بازی مقاومت بیشتری در برابر ایجاد تخلخل ناشی از آلودگی های چون روغن ، زنگ و پوسته های نوردی در ورق دارند.پودرهای جوش بازی در مقایسه با پودرهای جوش اسیدی مقاومت به ضربه بهتری نشان می دهند. این مزیت در جوش چند پاس به وضوح مشهود است. پودرهای جوش با بازیسیته زیاد در جوش های بزرگ با چند پاس خواص ضربه خیلی خوب و در جوش تک پاس خواص ضعیف تری را در مقایسه با پودرهای جوش اسیدی نشان می دهند. لذا مصرف پودرهای جوش بازی باید به جوش های بزرگ چند پاس که در آن استحکام ضربه خوب برای فلز جوش نیاز باشد محدود شود. منابع عیوب در جوش زیر پودری جوش زیرپودری فرایندی با گرمای ورودی بالاست و در زیر لایه محافظ فلاکس انجام می شود و لذا امکان بروز عیوب جوش در این روش بسیار کمتر از سایر روش هاست. عیوبی که بعضا در جوش زیرپودری رخ می دهند عبارتند از:
ترک انقباضی :ترک انقباضی در وسط طول گرده جوش زیر پودری هنگامی رخ می دهد که شکل گرده جوش و یا طرح اتصال مناسب نباشد و یا مواد جوش غلط انتخاب شده باشند. متمایل به ترک انقباضی در جوش با گرده جوش محدب و به شکل گرده ماهی هنگامی که نسبت پهنا به ارتفاع آن بیشتر از یک باشد کمتر است. هنگامی که عمق نفوذ جوش زیاد باشد تنش های انقباضی باعث ترک طولی در وسط جوش می شود و خطر این ترک می تواند براثر طرح اتصال نامناسب تشدید شود. مواد مستحکم تر بدلیل تنش بیشتر در جوش تمایل بیشتری به ایجاد ترک دارند. لذا هنگام استفاده از این مواد باید در انتخاب مواد جوش، آماده سازی طرح اتصال، دمای پیش گرمایش و دمای بین پاس ها کاملا دقت شود. ترک هیدروژنی :ترک هیدروژنی یک فرایند کند است و برخلاف ترک انقباضی که بلافاصله پس از جوش ظاهر می شود ایجاد آن تا روزها پس از جوش نیز می تواند ادامه یابد. برای کاهش خطر ترک هیدروژنی باید همه منابع هیدروژن مانند آب ، روغن و آلودگی های موجود در فلاکس الکترود و سطوح اتصال حذف شوند و ورق فلاکس و الکترود کاملا تمیز و خشک باشند. فلاکس و الکترود را باید در محل های خشک و مقاوم به رطوبت نگهداری کرد و چنانچه در معرض رطوبت قرار گرفت باید طبق دستور سازنده مجددا خشک شوند. انتخاب مواد جوش مناسب برای فولادهای پراستحکام مقاومت جوش را در برابر ترک هیدروژنی افزایش می دهد. مواد جوش ویژه مقاوم در برابر ترک هیدروژنی ساخته می شوند که قابلیت نفوذ هیدروژن در جوش را کاهش می دهند. پیش گرمایش قطعه کار خطر ترک هیدروژنی را باز هم کاهش می دهد. قطعات ضخیم گرمای پیش گرم را تا ساعت ها پس از جوشکاری در قطعه نگه می دارند. لذا خطر ترک هیدروژنی در این قطعات کمتر است. دمای پیش گرم مناسب بیشتر از 100 oC است زیرا در این دما هیدروژن درون فولاد کاملا متحرک است و به خروج بیشترین مقدار هیدروژن از فولاد کمک می کند. تخلخل :درجوش زیر پودری سرباره حفاظت خوبی از مذاب انجام می دهد و لذا تخلخل ناشی از ورود گاز به مذاب در جوش زیر پودری معمول نیست. در جوش زیرپودری منشاء تخلخل ممکن است از درون مذاب و یا فشردگی هایی در سطح گرده جوش باشد. برای کاهش تخلخل در جوش زیر پودری باید پوشش فلاکس کافی باشد و ورق، الکترود و فلاکس از همه آلودگی ها از جمله رطوبت روغن و غیره پاک باشند. در سرعت های بیش از حد جوش کاری نیز حباب های گاز فرصت خارج شدن از مذاب را پیدا نمی کنند که در صورت وجود حباب ها درست در زیر سرباره برای کنترل آن باید سرعت پیشروی جوشکاری را اندکی کاهش داد. |
▪ اهم مشخصات بدین شرح می باشد : در شکلهای زیر مقایسه بین شیشه بدون پوشش و با پوشش مشخص شده است. ▪ انتخاب پوشش مناسب در هر ساختمان تابع پارامترهای متعددی است از جمله : نوع، رنگ، ضخامت و مساحت شیشه، جنس چارچوب پنجره، اقلیم منطقه، وضعیت ساختمان نسبت به تابش خورشید، نوع سایه ها و ... برآیند این عوامل در جداول دقیق، جواز نصب پوشش در هر مورد را تعیین می نماید. همچنین نهایتا“ بااستفاده از نرم افزارهای مناسب پیش بینی میزان صرفه جوئی در انرژی ساختمان و هزینه ها میسر میباشد.
|
قالب لغزنده در امتداد قائم با سرعتی یکنواخت حرکت می کند و این سرعت به اندازه ای است که هر مقطع از بتن در طول مدت زمان لازمی که برای گیرش اولیه نیاز دارد درون قالب می ماند. روش قالب لغزنده عمودی برای سازه های پوسته ای با ضخامت جدار ثابت و یا تقریبا ثابت به کار می رود. قالب های لغزان قائم توسط جکهایی به بالا حرکت داده می شوند که بر روی میله های صاف یا لوله های سازه ای کار گذاشته شده در بتن سخت عمل می کنند. این جکها ممکن است از نوع دستی، بادی، برقی و یا هیدرولیکی باشند. سکوهای کار و داربست های کارگران پرداختکار نیز به قالب بندی متصل و به همراه آن حرکت می کنند.
خود قالب ها را می توان در سه بخش در نظر گرفت : قالب بدنه که نیز می تواند از پانلهای فلزی، پانلهای چند لایه و یا الوارهای چوبی باشد مستقیما به پشت بندهای افقی متصل می شود. سکوی کار: معمولاً سه سطح کار در نظر میگیرند. یکی که بالاتر از طوقهها و در ارتفاعی در حدود دو متر و بالاتر از انتهای دیوار قرار گرفته و برای استفاده از بست های فلزی ثابتکننده به کار میروند. دیگری سکویی است که در بالای کف و همتراز بالای قالب قرار میگیرد و برای قرار دادن ظرف بتن و انبار کردن مصالح و وسایل تراز کردن و همچنین وسایل کنترل جک مورد استفاده قرار میگیرد و بالاخره سومین سکو به صورت چوببست آویزان و یا یکسره که معمولاً در دو طرف دیوار قرار گرفته و برای دسترسی به نمای قسمتی از دیوار، که به تازگی قالب آن را باز کرده و ترمیم احتمالی آن، مورد استفاده قرار میگیرد. جکهای هیدرولیکی: جکهای هیدرولیکی مورد استفاده معمولاً با ظرفیت خود، نظیر جکهای سه تنی و یا شش تنی مشخص میشوند. |