| آشنایی با المانهای ساندویچ پانل با توجه به وسعت کشور ایران و شرایط اقلیمی متفاوت در نواحی مختلف این سرزمین لازم است روشهای ساختمان سازی متناسب با ویژگیهای خاص منطقه ای تدوین و به مورد اجرا گذاشته شود . نظر به اینکه این کشور روی یکی از کمربندهای فعال زمین لرزه در جهان قرار دارد لذا ایجاد سازه های مقاوم و امن از اولویت خاصی برخوردار است . |
اصول آب بندی بتن:
اصلاح منحنی دانه بندی و کنترل میزان فیلر بتن یعنی FILLER بیشتری نسبت به سایر مواد داشته باشد و تغییرنسبت مصالح درشت به ریز(در بتن های معمولی شن بیشتر است ولی در اینجا نسبتها برابر باید باشد.
در قسمتهای بعدی نسبت آب به سیمان حداقل است،از دیگر عوامل موثر ویبره ی مناسب است و برای افزایش ضریب اطمینان لزوما همه بتن ها نیاز به افزودنی ندارند البته اگرخوب اجرا شود.
اصول آب بندی درزها:
1- واتر استاپ
2- درزگیر که به عنوان مکمل استفاده می شود نه به عنوان جایگزین.
آیا با مصالحی همچون واتر استاپ یا ژیو ممبرن یا ژیو تکستال یا لحاف بتنی یاانکر بولت یا بنتونیت یا بتن های گرما زا یا انواع دیگر بتن و مصالح جدید آشنا هستید، از کاربرد ها و نحوه استفاده از آنها اطلاعی دارید؟
همان طوری که می دانید با توجه به مشکلات عدیده ای که در پروژه های عمرانی و دیگر پروژه ها وجود دارد و یا خواسته های فراتر از انتظار کارفرما ها که در انواع پروژه های مختلف مطرح می شود ویا بروز می کند آن مهندسی موفق است که راهکاری جدید برای برون رفت از آن مشکل پیشنهاد کند.
اینکه یک مهندس بتواند راهکاری مشکل گشا برای مساله ی پیش آمده بیابد نیاز به ابزاری دارد که از آنها می توان به هوش و درایت،حافظه ی قوی، معلومات تءوری و آکادمیک بالا و همچنین معلومات فنی بالا اشاره کرد.
در مسایل اجرایی معلومات فنی بالا نقش اساسی تری ایفا می کند.به عنوان مثال آگاهی از مصالح نوین می تواند راه حل های خوبی را برای برون رفت از مشکلات اجرایی فراهم آورد.
بنابراین من سعی دارم طی مرور زمان به ارایه ی مطالبی جالب و کاربردی از این مصالح بپردازم.
در ابتدا فایل یک فایل power point برای شما می گزارم که راجع به انواع بتن های نو ظهور در صنعت ساخت وساز میباشد
یکی از مشکلات اساسی که در اکثر سازه ها به چشم می خورد مشکل نم و رطوبت می باشد که در بعضی مواقع خسارات جبران ناپذیری را به ساز ها و ساختمان وارد می نماید و یکی از راهکارهای مقابله با آن عایقکاری رطوبتی می باشد .
مزایا اجزای تشکیل دهنده عایق بام |
برای جلوگیری از ایجاد لنگر پیچشی، اتصال تیر به تیر از نوع مفصلی تعریف میگردد.در این حالت برای جلوگیری از ناپایداری پیچشی میبایست پیچش در یکی از دو طرف آزاد گردد.ضمن اینکه به علت مفصلی بودن، لنگر انتهایی نیز میبایست صفر گردد. تیر های کنسول و تیرهای فرعی که از یک یا دو طرف مفصلی تعریف میگردند میبایست از نوع شکل پذیری معمولی برای آنها تعریف گردد.
اتصالات تیر های کنسول به ستون ها گیردار میباشد.در صورت مفصلی بودن این تیرها حالت ناپایداری موضعی در سازه ایجاد میشود که میبایست برای تیرهای کنسول علامت No Releases فعال گردد.
بار زنده کف بالکن ها طبق بند 6-3-2-5 باید حداقل 300 کیلوگرم بر متر مربع در نظر گرفته شود و طبق بند 6-3-5-1 برای درنظر گرفتن اثر بارهای ضربه ای ، بار زنده درکف بالکن ها میبایست در ضریب 1.33 ضرب گردد.
معمولا در کنسول ها برای تحمل نیروی قائم و جلوگیری از ناپایداری کنسول تحت بارهای قائم از دستک های کششی استفاده میشود که طراحی آنها همانند بادبند های قطری میباشد. و توصیه میشود در تراز انتهایی برای نگهداری بهتر ، این دستک های بادیندی بصورت ضربدری اجرا گردد.اتصال این دستک ها میبایست به نقاط انتهای صورت گیرد واز اتصال این دستک ها به نقاط مابین ابتدا و انتهای ستون خودداری شود.
اعمال نیروی قائم زلزله:
طبق بند 13-3-12-2 آیین نامه 2800 نیروی قائم وارد بر بالکن ها و پیش آمدگیها میبایست از رابطه 2*0.7AIWp بدست آید و این بار میبایست در هر دو جهت روبه بالا و رو به پایین بدون منظور نمودن اثر کاهنده بارهای ثقلی در نظر گرفته شود.یعنی وقتی بار ثقلی در ترکیب بار داریم دراینصورت ترکیب بار ( بار ثقلی +سمت بالای نیروی قائم -EQz) در هیچ حالتی بدلیل کاهنده بودن نمیبایست با هم آورده شود. لازم به ذکر است مولفه بار قائم تاثیر چندانی در نتایج تحلیل و طراحی نخواهد گذاشت.
ملاحضات معماری در طراحی سازه ها :
نقشه های معماری تهیه شده در فاز 1 بر اساس ابعاد ستون 20*20 و نیز ضخامت سقف 30 سانت فرض میشود لذا پس از طراحی سازه ارتفاع طبقات وطول دهانه ها مقداری تغییر خواهند کرد بصورتیکه فضای خالص بین طبقات مطابق نقشه های معماری ثابت بمانند.
در طبقات مسکونی اختلاف ارتفاع تیر ها و سقف ها را میتوان با پوکه پر نمود یا اینکه از سقف کاذب از جنس رابیتس با وزن مخصوص تقریبی بین 40 تا 50 کیلوگرم بر سانتیمتر مربع استفاده نمود.در پارکینگ میتوان این اضافه ارتفاع را به شکل آویز و در طبقات مسکونی در بالای سقف به شکل گرده ماهی اجرا نمود.
شیب رمپ پارکینگ معمولا 15% میباشد و چنانچه رمپ در زیرزمین واقع شود، با خاکریزی اجرا شده و نیازی به طراحی سقف برای رامپ نیست.
سربار معادل بار پارتیشن:
طبق بند 6-2-2-2 مبحث 6 چنانچه وزن واحد سطح تیغه های پارتیشن از 275 کیلوگرم بر سانتیمتر مربع کمتر باشد میبایست این وزن در سطح چشمه ای که تیغه در آن میباشد ضرب گردد و بصورت سطحی این بار بر همان سقف وارد آید. همچنین طبق مبحث 6 چنانچه این وزن از 195 کیلوگرم بر سانتیمتر مربع میبایست اثر موضعی دیوار ها در طراحی تیرچه ها منظور گردد.
بار زنده کاهش یافته:
کاهش بار زنده برای راه پله،بام و پارکینگ و سایر نقاط پر ازدهام اعمال نمی گردد.برای تیرها نیز چنانچه بار زنده کف از 400 کیلوگرم بر متر مربع بیشتر باشد از کاهش بار زنده پرهیز میشود.
برای کاهش بار زنده تیرها و ستون ها در منوی Option>Preferences>Live Load Reduction گزینه User Defined Curves با تعریف حداقل دو منحنی با نسبت DL/LL برابر 0.001 و 1000 طبق رابطه 6-3-1 مبحث 6 مختص تیرها تعریف گردد و سپس برای ستون ها با کنترل اعداد بند 6-3-8-3 نتایج کنترل گردد. اما توصیه میشود از کاهش بار زنده برای تیرها به جهت کم بودن مقادیر صرفنظر شود و برای ستون ها از عبارت Usr Defined By Stories استفاده شود و مقادیر کاهش بار طبق درصدهای ارائه شده در بند 6-3-8-3 اعمال گردد.
- درصورت استفاده از تیرچه جفت به جای تیرچه تک وزن واحد سطح کف بطور تقریبی حدود 70 کیلوگرم بر سانتیمتر مربع افزایش خواهد یافت.
-وزن اسکلت بتنی بسیار بزرگتر از اسکلت فولادی سازه هم طبقه آن خواهد بود لذا توجه شود عملا امکان آپلیفت و بلند شدگی برای سازه بتنی کمتر بوقوع میپیوندد و برای سازه بتنی ضریب اطمینان برای لنگر واژگونی بیشتراست
مقدمه
تعریف : روفیکس صفحه فلزی مشبکی است که دارای هفت ناودانی به شکل V و تعداد حداقل 7000 شبکه در هر متر مربع میباشد.
تاریخچه : بیش از چهل و پنج سال است که در کشورهای اروپایی از این محصول استفاده میشود. روفیکس در ابتدا به صورت سقف کاذب مسلح (بدون نیاز به شبکه آرماتور) مورد استفاده قرار گرفت . با بستن روفیکس به زیر تیرهای فرعی توسط مفتول فلزی دیگر نیازی به نصب شبکه آرماتور برای نگهداری سقف کاذب وجود نداشت و این خود موجب صرفهجویی در مصرف مصالح و همینطورباعث سرعت و سهولت در اجرا میشد.
مقاومت خمشی قابل توجه روفیکس مهندسین را بر آن داشت که با قرار دادن آن بر روی تیرهای فرعی و ریختن بتن بر روی آن، این محصول را به عنوان قالب و همینطور بخشی از فولاد تقویتی مورد استفاده قرار دهند. آزمایشات متعدد نشان دادند که ترکیب بتن با روفیکس از طریق درگیر شدن بتن در شبکههای آن ، مقاومت قابل توجهی را در مقابل بارگذاری از خود نشان میدهد.
امروزه روفیکس با حدود نیم قرن حضور در صنعت ساختمان در اروپا هنوز جزو یکی از مصالح ساختمانی شناخته شده و مفید محسوب میشود.
مشخصات :
ورق اولیه: ورق رول به ضخامت 0.8 میلیمتر از نوع فولاد مبارکه ST- 12
ـ انواع : در دو نوع روغنی و گا لوانیزه.
ـ ابعاد : عرض 82 سانتیمتر و طول حداکثر 12 متر.
ـ وزن : حدود 4 کیلوگرم در متر مربع
- بتن: متراکم کردن بتن نیز به راحتی توسط تخته ماله امکان پذیر است. اسلامپ مناسب برای بتن دال بین 3 الی 5 سانتیمتر میباشد.
امتیازات سقف روفیکس
1 ـ سهولت اجرا
نصب روفیکس نیازی به نیروی ماهر مانند قالب بند ندارد و انجام آن توسط کارگران ساده ساختمانی به راحتی امکان پذیر است. همچنین همزمان با قرارگرفتن روفیکس بر روی تیرها، یک شبکه ایمنی در زیر پای کارگران گسترده میشود که از سقوط اجسام و افراد کاملا جلوگیری مینماید.
2 ـ سرعت
سرعت قالب بندی با روفیکس در حدود 800 مترمربع در روز با دو کارگر میباشد. با پوشش روفیکس در تمام طبقات ساختمان ،میتوان کلیة طبقات را همزمان بتن ریزی کردودر ضمن قابلیت شکل پذیری روفیکس این امکان را بوجود میآورد که فرمهای پیچیدة معماری را نیز بتوان به سهولت قالب بندی کرد.
3 ـ سهولت حمل و نقل ، و حجم ناچیز ضایعات
بر خلاف مصالحی مانند بلوک سفالی و بتنی متداول ، بارگیری و حمل روفیکس هیچگونه ضایعاتی ندارد. انبار کردن روفیکس به فضای کمی نیازمند است بطوری که یک کامیون به ظرفیت 10 تن قادر است بیش از 2500 متر مربع قالب روفیکس را حمل کند.
4 ـ افزایش استحکام سازه
قرار گرفتن روفیکس در سطح زیرین دال ، یعنی در ناحیة حداکثر تنش کششی و قفل شدن بتن در شبکههای آن ، موجب میشود که تنش های حاصل از بارگذاری به ناودانیها روفیکس منتقل شوند. هر یک از ناودانیهای روفیکس دارای سطح مقطعی برابر با 40 میلیمتر مربع (معادل سطح میلگردی به قطر 7 میلیمتر) میباشد. فاصلة ناودانیهای روفیکس از یکدیگر 13.5 سانتیمتر است .
بنابراین در هر متر عرض روفیکس سطح مقطع فلزی برابر 300 میلیمتر مربع قرار میگیرد.
بر خلاف شبکة میلگرد که درآن میلگردها مستقل از یکدیگر عمل می کنند. ناودانیهای روفیکس از طریق شبکة آن به یکدیگر متصل بوده و یک سطح یکپارچة فولادی تشکیل میدهند.
بارگذاری های متعدد نیز نشان دادهاند که ترکیب روفیکس و بتن در صورتی که متراکم کردن بتن و درگیری آن با شبکههای روفیکس به نحو مطلوبی انجام شده باشد،میتواند در حذف و یا کاهش مصرف آرماتور ،مؤثر واقع شود.
طبق آزمایشات انجام شده بر روی سقف روفیکس ، مقاومت خمشی ازمایشگاهی این سقفها حدودا 20 درصد بالاتر از مقاومت خمشی محاسباتی انها می باشد.
این افزایش مقاومت ،بدان علت است که ،به هنگام بتن ریزی ،روفیکس در وسط دهانه حدود1 سانتیمتر خیز بر می دارد.در نتیجه عمق مقطع مرکب بتنی دال در وسط دهانه افزایش یافته واین اضافه مقاومت رافراهم می کند.که البته در جهت اطمینان ،در محاسبات سقف روفیکس از این پدیده صرفنظر می کنند.
در شکل زیر یک نمونه آزمایش خمشی دال در آزمایشگاه مرکز تحقیقات ساختمان و مسکن ایران مشاهده میشود.
در هیچ یک از بارگذاریها از میلگرد و یا هر گونه مصالح تقویتی دیگر استفاده نشده و آزمایشها صرفا به منظور مطالعه رفتار بتن و روفیکس صورت گرفتهاند.
جدول طراحی و انتخاب ضخامت دال بتنی روی قالب روفیکس و رابطة بین ضخامت دال بتنی و اندازة دهانة تیرهای فرعی برای شرایط مختلف بارگذاری درنمودار هایی تنظیم شده اند. بعنوان مثال ، چنانچه فاصلة تیرهای فرعی از یکدیگر برابر با یک متر تعیین شده باشد ، دال بتنی با ضخامت 7 سانتیمتر میتواند ، با رعایت حاشیة اطمینان قانونی ، سرباری معادل 1600 کیلوگرم بر متر مربع را تحمل کند. آزمایشات مختلف نشان دادهاند که ظرفیت نهایی دال در حدود سه برابر مقادیر این نمودار میباشد.
ایده استفاده از سدهای لاستیکی اولین بار در سال 1950 توسط «ایمبرسون» مطرح شد. در سال 1965 اولین سد لاستیکی بادی در ژاپن برای ذخیره سازی آب به بهره برداری رسید.
هم اکنون در حدود 100 سد لاستیکی در آمریکای شمالی، بیش از 1000 سد لاستیکی در ژاپن و خاور دور، و در مجموع 2600 سد در نقاط مختلف جهان به طور موفقیت آمیز در دست بهره برداری میباشند
کاربرد ها و مزایای سدهای لاستیکی
کنترل سیلابها و تنظیم جریان رودخانه :
کنترل رسوب رودخانه
از آن جا که سکوی بتنی محل استقرار سد لاستیکی، در کف رودخانه و هم تراز با بستر آن کار گذاشته می شود، در هنگام خواباندن سد، شرایط رودخانه مانند شرایط قبل از احداث سد لاستیکی است. این ویژگی باعث می شود که پشت سدهای لاستیکی را رسوب پر نکند، زیرا در هنگام وقوع سیل که بیشترین بار رسوب گذاری رودخانه است، سد به صورت اتوماتیک به حالت خوابیده در می آید و رودخانه شرایط طبیعی پیدا می کند.
موارد استفاده از سدهای لاستیکی
1- کنترل سد و حفاظت ساحلی در برابر فرسایش.
2- نصب بر روی بندها و سدها به منظور افزایش ارتفاع آنها و کمک به تولید برق.
3- کاهش آلودگی آب.
4- افزایش ظرفیت ذخیره سدها.
5-مسائل تفریحی از قبیل شنا، قایق رانی،...
6- جلوگیری از نفوذ آب شور دریا به هنگام مد به ساحل.
مزایای اقتصادی سدهای لاستیکی نسبت به موارد جایگزین
از جمله مزایای اقتصادی این سد ها نسبت به موارد جایگزین شده عبارتند از :
1-سدهای لاستیکی به فونداسیون پیچیده ای نیاز ندارند.
2-این سد ها می توانند تا دهانه ای به طول 100 متر اجرا شوند.
3-این سدها به حداقل حفاظت و نگهداری نیاز دارند. قسمت عمده تعمیرات مربوط به سیستمهای مکانیکی سد می باشد. تعمیر و نگهداری بدنه سد نیز شباهت بسیاری به تعمیر لاستیک اتومبیل دارد و در صورت سوراخ شدن بدنه سد آن را مانند لاستیک اتومبیل پنچر گیری می کنند.
4-انعطاف پذیری سد در مقابل زلزله.
5- نصب و ساختن بسیار سریع.
اجرای سدهای لاستیکی
سدهای لاستیکی از یک تیوپ هوا که به یک بستر متصل می شود تشکیل شده است، انواع قدیم سدهای لاستیکینامیده می شد که به در آنها مخلوط آب و هوا برای متورم کردن تیوپ استفاده می شد، در حال حاضر از سدهایی به نام INFLATABLE DAM استفاده می گردد یعنی سدهایی که قابل باد شدن می باشند.
ساختمان سدهای لاستیکی را می توان متشکل از سه بخش دانست :
1- بدنه سد ( RUBBER DAM BODY )
2- بستر سد و تجهیزات مهار
3- سیستم کنترل و بهره برداری FABRI DAM
بدنه سد
بدنه سد پیشرفته تیرن جز تشکیل دهنده سد لاستیکی می باشد که ترکیبی از لاستیک و الیاف تقویت کننده بوده و به صورت ورق تولید می گردد. ورقه های لاستیکی در طولهای مورد نیاز به عرض 1 متر الی 2 متر تولید می گردد که از اتصال آنها به یکدیگر به صورت عرضی بدنه سد به صورت یکپارچه تولید می شود.
برای حفاظت بدنه در برابر عوامل جوی و همچنین اجسام معلق در آب از مواد مختلفی برای مقاومکردن بدنه استفاده می شود از جمله کلروپرن ( CR ) و اتیلن پروپیلن مونومد ( EPDM ) که هر دو ماده مقاومت بالایی در برابر عوامل جوی و تغییرات گسترده درجه حرارت محیط دارند که این نوع مواد از فیبرهای سخت که تحت فشار و حرارت زیاد قرار می گیرند تشکیل می گردد.
بستر سد و تجهیزات مهار
بستر سد عموماً در کف به صورت سطح و در دو طرف به صورت شیب دار ساخته می شود. لوله هایی که در پر وخالی کردن آب یا هوا به کار می روند عمدتاً در بستر کار گذاشته می شوند. بدنه لاستیکی سد به وسیله لوله و میله در محل نگه داشته و توسط پیچ مهار، نصب می گردد. با تزریق رزین پلیاستر در محل، این قسمت سخت و محکم می شود. بخش بیرونی پیچهای مهار پس از عبور از سوراخهای تعبیه شده در بدنه سد لاستیکی توسط مهره و واشر به بستر محکم می گردد. ارتفاع این پیچ و مهره ها پس از بستن سد لاستیکی بایستی پایین تر از سطح کف بستر رودخانه باشدتا از تجمع گل و لای هنگامی که سد خالی است جلوگیری به عمل آید.
نصب بدنه سد به بستر به دو روش سیستم مهاریک ردیفی و سیستم مهار دو ردیفی صورت می گیرد. مزیت سیستم مهار دو ردیفی این است که هر چه فاصله دو ردیف بیشتر باشد تأثیر تغییرات ارتفاع سد با نوسانات سطح آب به حداقل می رسد.
اتاق کنترل
ابعاد یک اتاق کنترل استاندارد در حدود 10 مترمربع می باشد، اتاق کنترل شامل یک قاب کنترل و یک کمپرسور هوا می باشد.
دلایل انتخاب هوا به جای آب برای متورم کردن سدهای لاستیکی :
انتخاب هوا به جای آب به چند دلیل زیر می باشد :
1-دسترسی به هوای تمیز با حجم زیاد خیلی راحت تر از دسترسی به آب تمیز با حجم زیاد است.
2- از لحاظ اقتصادی هزینه پرکردن سدهای لاستیکی با هوا خیلی کمتر از هزینه پرکردن با آب میباشد.
3-لوله های حامل آب جهت پر کردن سد اغلب به خاطر در بر داشتن آب حاوی رسوب مبتلا به گرفتگی شده و مشکلات تعمیری را بوجود می اورد.
4-سدهای پر شده از آب به یک سیستم لوله کشی خیلی پیچیده و لوله های قطور احتیاج دارند و برای پر کردن یک سد در هنگام نبودن آب اغلب به یک مخزن نگهداری آب در حاشیه آن نیاز است.
5-از لحاظ عملی هوا زمان خیلی کمتری از آب برای آهسته بلند کردن یک سد لاستیکی نیاز دارد.
6-سدهای پر شده از آب در یک هوای سرد ممکن است دچار یخ زدگی شود.
7-هزینه ساخت فونداسیون سدی که از آب پر شده نسبت به سدی که از هوا پر شده بیشتر است. علاوه بر این از 8-نظر سازه ای پی سد آبی از لحاظ استحکام به دلیل تحمل وزن عظیمی از آب روی خود از پی سد بادی حجیم تر است
برخی از مشکلات سدهای لاستیکی
1- آسیب دیدگی بدنه سد در هنگام خالی کردن باد بدنه.
2- برخورد اجسام بزرگ و نوک تیز که موجب آسیب به بدنه می شود.
3- فرار و خروج هوا : به هنگام خالی کردن باد بدنه سد ممکن است اجسام نوک تیز ایجاد پنچری نمایند و نیز هنگام سیلاب در اثر برخورد اجسام بزرگ مانند تنه درخت و... با بدنه سد در آن خراشیدگی یا سوراخ ایجاد گردد.