در ایران نیز از چند هزار سال پیش، به منظور استفاده از آبهای زیر زمینی تونل هایی موسوم به قنات حفر شده است که طول بعضی از آنها به 70 کیلومتر و یا بیشتر نیز میرسد. تعداد قنات های ایران بالغ بر50000 رشته برآورده شده است. جالب توجه است که این قنات های متعدد، طویل و عمیق با وسایل بسیار ابتدایی حفر شده اند.رومی ها نیز در ساخت قناتها و همچنین در حفاری تونل های راه پرکار بودند. آنها در ضمن اولین دوربینهای مهندسی اولیه را در جهت کنترل تراز وحفاری تونل ها به کار بردند.اهمیت احداث تونل ها دردوران های قدیم ، تا بدین جاست که کارشناسان کارهای احداث تونل درآن تمدنها را نشانگر رشد فرهنگ و به ویژه رشد تکنیکی و توان اقتصادی آن جامعه دانستهاند. تمدنهای اولیه به سرعت ، به اهمیت تونلها ، به عنوان راههای دسترسی به کانی ها و مواد طبیعی نظیر سنگ چخماق به واسطه اهمیتش برای زندگی، پیبردند. همچنین کاربرد آنها دامنه گستردهای از طاق زدن بر روی قبرها تا انتقال آب و یا گذرگاههایی جهت رفت و آمد را شامل می شد. کاربردهای نظامی تونلها ، به ویژه از جهت بالابردن توان گریز یا راههایی جهت یورش به قرارگاهها و قلعه های دشمن ، ازدیگر جنبه های مهم کاربرد تونلها در تمدن های اولیه بود.
تونل سازی همزمان با انقلاب صنعتی، به ویژه به منظور حمل و نقل ، تحرک قابل ملاحظه ای یافت. تونل سازی به گسترش و پیشرفت کانال سازی کمک کرد و این امر در توسعه صنعت به ویژه در قرون 18 و 19 میلادی در انگلستان سهم بسزایی داشت. کانالها یکی از پایه های انقلاب صنعتی بودند وتوانستند در مقیاس بسیار بزرگ هزینههای حمل و نقل را کاهش دهند. تونل مال پاس با طول 157 متر برروی کانال دومیدی در جنوب فرانسه اولین تونلی بود که دردورههای مدرن در سال 1681 ساخته شد. همچنین اولین تونل ساخته شده با کاربرد حفاریو انفجار باروت بود. در انگلستان، قرن 18 نیز جیمز بریندلی از خانواده ای مزرعه دار با نظارت بر طراحی و ساخت بیش از 580 کیلومتر کانال و تعدادی تونل به عنوان پدر کانال و تونل های کانالی ملقب شد. وی در سال 1759 با ساخت یک کانال به طول 16 کیلومتر مجموعه معدن زغال دوک بریدجواتر را به شهر منچستر متصل نمود. اثر اقتصادی تکمیل این کانال نصف شدن قیمت زغال در شهر و ایجاد یک انحصار واقعی برای معدن مذکور بود.
در اوایل قرن نوزدهم به منظور عبور از قسمتهای پایین دست رودخانه تایمز هیچ سازه ای موجود نبود و 3700 عابر مجبور بودند با طی یک راه انحرافی 3 کیلو متری با قایق مسیر روترهایت بهویپنیگ را طی کنند. اقدام به ساخت یک تونل نیز به دلیل ریزشی بودن ومناسب نبودنرسوبات کف رودخانه متوقف شد. تا اینکه در حدود سال 1820 فردی بنام مارک ایرامبارد برونل از فرانسه ایده استفاده از سپر را مطرح نمود و در سال 1825 کار احداث تونل بین روترهایت و ویپنیگ را آغاز و علی رغم جاری شدن چند نوبت سیل در سال 1843 آن را باز گشایی نمود. این تونل تامس نام گرفته و اولین تونل زیر آبی بود که بدون هر گونه رودخانه انحرافی حفر شد.
در دیگر موارد تونلهای زهکشی بزرگ ، نظیر تونلی با طول 7 کیلو متر در هیل کارن انگلستان ، اهمیت زیادی در توسعه صنعت معدنکاری داشتهاند. البته بررسی تاریخچه پیشرفت در روش ها و تکنیک ها و به عبارتی در هنر تونل سازی نشانگر این مطلب است که مانند بسیاری دیگر از علوم و فنون بیشتر رشد این هنردر قرن گذشته صورت گرفته و تا حال نیز ادامه دارد.
ویژگی های فضاهای زیرزمینی و نمونه های بارز آنهاهم اکنون در زمینه های مختلف کاربرد تونلها ، مزایای متفاوت و گوناگونی را بر می شمرند. از آن جمله ویلت، استفاده فزاینده فعلی از فضاهای زیر زمینی را به دلایل زیر رو به افزایش دانسته است.
1- تفوق محیط ساختاری به معنای وجود یک حصار وساختار طبیعی فراگیر.
2- عایق سازی با سنگهای فراگیر که دارای ویژگیهای عالی عایقها می باشند.
3- محدودیت کمتر دراحداث سازه های بزرگ به دلیل نیاز کمتر به استفاده از وسایل نگهداری عمده در مقایسه با احداث همان سازه بر روی سطح زمین.
4- کمتر بودن تأثیرات منفی زیست محیطی.
از دیگر مزایای تونل ها در راههای ارتباطی می توان به :
1- کوتاهتر شدن مسیرها و افزایش راند مان ترافیکی
2- بهبود مشخصات هندسی مسیر
3- جلوگیری از خطرات ریزش کوه و بهمن
4- ایمنی بیشتر در برابر زلزله، اشاره کرد .
مثال های متعددی می توان از نقش وتأثیر عمده تونل سازی و پروژه های بزرگ این صنعت از گذشته تا حال ذکر کرد . تونل مشهور مونت بلان دو کشور فرانسه و ایتالیا را به هم متصل میسازد. عملیات ساختمانی آن در سال 1959 آغاز گردید و حفر این تونل فاصله بین میلان وپاریس را به طول 304 کیلو متر کوتاهتر نموده است. از دیگر نمونه ها کشور فنلاند است که سازه های زیر زمینی را به صورت غارهای عظیم بدون پوشش بتنی ، به منظور انبار مواد نفتی مورد استفاده قرار داده و در حال حاضر بیش از 75 انبار نفتی در سراسر کشور فنلاند با گنجا یشی بیش از 10 میلیون متر مکعب ساخته شده است.
این مقاله نگاهی اجمالی به نقش مهندسی رودخانه و اهمیت بکارگیری آن در طراحی پلها دارد. علیرغم استفاده از مصالح و تکنولوژی پیشرفته و صرف هزینه های هنگفت در طراحی و ساخت پل ها هرساله شاهد شکست و یا تخریب پلهای زیادی در دنیاو در کشورمان در اثر وقوع سیلاب هستیم. شکست و تخریب پلها علاوه بر خسارات مالی و گاهی هم جانی راه ارتباطی به نقاط سیل گیر و محتاج کمک رسانی را قطع می کند و خسارتها را دو چندان می نماید.
طبق بررسیهای انجام شده در اکثر موارد علت شکست پلها عبارتند از:
· عدم برآورد صحیح سیلاب طراحی (Flood Design) و کم بودن ظرفیت عبور سیلاب از دهانه پلها
· جانمایی (Layout ) نامناسب پلها بدون توجه به مسائل ریخت شناسی (Morphology) رودخانه
· بر آورد نادرست از عمق شالوده (براساس معیارهای سازه ای و ژئوتکنیکی) بدون توجه به مسأله فرسایش آبشستگی
· فراهم نکردن تمهیدات لازم برای عبور مناسب جریان از سازه پلها
· نقصان در حفاظت و نگهداری از پلها
بر اساس آمار و اطلاعات جمع آوری شده از خسارات سیلاب در دوره زمانی سالهای 1331 تا 1375 افزایش تخریب پلها در اثر سیلاب چشمگیر بوده است. آنچه که مسلم است یکی از عوامل اصلی این تخریبها عدم رعایت مسائل هیدرولیکی و مهندسی رودخانه در طراحی پلها در طی دهه گذشته ( که دوره توسعه سازندگی و پیشرفت بوده است) می باشد و شواهد نشان می دهد که در سالهای اخیر به این مساله توجه کافی نمی گردد. مسلماً عواقب ناشی از عدم رعایت مسائل مهندسی رودخانه در پل سازی جزصرف هزینه های زیادو بی حاصل ثمری نخواهد داشت و لازم است در برنامه های مربوط به پلسازی معیارهای هیدرولیکی در مطالعات طراحی و اجرای پلهامورد توجه قرارگیرند. تحقیقات انجام شده روی پلها نشان می دهد که علاوه بر عوامل سازه ای و ژئوتکنیکی که در محاسبه ابعاد پلها به کار می روند عوامل هیدرولیکی و اندرکنش سازه پل و رودخانه در تعیین جانمایی طول ارتفاع پایه و تکیه گاهها و حفاظت از پلها نقش اساسی دارند.
جانمایی و راستای قرارگیری پلها
عبور جاده و یا خط راه آهن از روی رودخانه ها محدود به بازه های خاصی از رودخانه هاست که توسط مسیر کلی راه مشخص می گردد علاوه بر آن مسیر کلی راه راستای قرارگیری پل روی رودخانه را نیز تعیین می نماید در حد امکان از احداث پل در بازه های ناپایدار باید اجتناب نمود بازه های ناپایدار بازه هایی از رودخانه هستند که رودخانه در آنها فرسایشی و یا رسوبگذار است.
انتخاب راستای پل عمود بر راستای جریان از وارد آمدن نیروی بیشتر و مورب به تکیه گاهها و پایه های پل جلوگیری می کند همچنین طول پل کاهش می یابد که در کاهش هزینه های کلی طرح بسیار موثر است استفاده از عکسهای هوایی و توپوگرافی بامقیاس مناسب ( 1.50000 تا 1.20000) یکی از راههای مفید برای مطالعه جانمایی و تعیین بهترین مسیر عبور پل از روی رودخانه است.
پروفیلهای کامپوزیتی که به روش پالتروژن تهیه میشوند، کاربرد فراوانی در ساخت پلها دارند. پلهای کامپوزیتی حاصل، در مقایسه با پلهای مشابه از جنس بتن و فولاد، از سبکی، طول عمر و سرعت نصب بیشتری برخوردارند و هزینه نصب کمتری دارند. متن فوق که برگرفته از شمارههای1، 3 و 4 مجله کامپوزیت است به معرفی این کاربرد کامپوزیتها میپردازد.
یکی از وسیعترین کاربردهای محصولات پالتروژنی در ساختمان، تولید سازههای باربر است. ساخت پلها و زیرسازهها با پروفیلهای پالتروژنی بهشدت مورد توجه مهندسین آمریکایی و اروپایی قرار گرفته است. عمر مفید بالا و کاهش هزینههای نگهداری پل در طول دوره کاری، دلیل استقبال از کامپوزیتها در ساخت پلها میباشد. سازههای بزرگی که توسط تیرهای فولادی ساخته شدهاند در طول عمرشان چندین بار رنگآمیزی میشوند. تعمیر و نگهداری و رنگآمیزی این تیرهای فولادی بهویژه در پلهای قدیمی بلند که دسترسی به آنها مشکل است، بسیار پرهزینه میباشد.
سطوح پلهای کامپوزیتی نیز از پانلهای کامپوزیتی ساخته میشوند. استفاده از پانلهای کامپوزیتی روشی مناسب برای کاهش هزینههای تعمیر و نگهداری این سازههاست. این پانلها از روشهایی همچون لایهچینی دستی و پالتروژن ساخته میشوند و با طول عمر بالا و استحکام بیشتر، جایگزین ایدهآلی برای مشابه فولادی خود هستند. سطوح پلهای کامپوزیتی بصورت طولهای پیوسته توسط فرآیند پالتروژن طراحی و تولید میگردند.
این قطعات متناسب با احتیاج مصرفکننده میتواند در سایزهای مختلفی بریده شود تا با ابعاد پل موردنظر سازگار باشند. پلهای کامپوزیتی اکنون بهعنوان پلهای دایمی برای راههای اصلی بسیاری از کشورهای پیشرفته بکار گرفته میشوند. این پلها بهمیزان قابل قبولی اهداف موردنظر طراحان را برآورده ساختهاند.
نخستین نمونه این پلها در ایالات متحده آمریکا طراحی و تست شدند و اولین نمونه آن در روستایی در ویرجینیای غربی نصب شد. نصب پلها در ویرجینیای غربی ثابت کردند که کامپوزیتها بطور عملی برای ساخت پلهای هوایی بسیار مفید هستند. این یک مرحله مهم در توسعه پلهایی بود که با کامپوزیتها ساخته شدهاند.
نمونه دیگری از پلهای کامپوزیتی، یک پل در دانمارک است که در آن از پروفیلهای پالتروژنی استفاده شد. این پل با 40 متر طول و 3 متر عرض جهت عبور عابرین پیاده، دوچرخهها و موتور سیکلتها طراحی شده و بر روی خط راهآهن احداث گردیده است. پل مذکور میتواند بارهای معادل kg/m2_500 را تحمل کند و این استحکام بوسیله یک سطح کامپوزیتی که تنها 12 تن وزن دارد مهیا میشود. در حالی که سطوح پلهای بتونی و فولادی که بتوانند همین میزان استحکام را داشته باشند بهترتیب دارای وزنهای 90 و 28 تن خواهند بود. ارتفاع این پل 18.5 متر است. تیرها و پانلهایی که در ساخت این پل بکارگرفته شدهاند از پروفیلهای پالتروژنی ساخته میشوند. برجها و بخشهای دیگر بصورت پیشساخته نهایی در محل پل نصب میشوند. بهدلیل سبکی وزن کامپوزیتها، نصب پل تنها 18 ساعت طول کشید و مزاحمت و آشفتگی در ترافیک ریلها به کمترین حد ممکن رسید.
در فیلادفیای آمریکا با استفاده از کامپوزیتها، نوعی پل کابلی طراحی شده است که توانایی جمع شدن دارد.
اجزای کامپوزیتی پلها نسبت به مشابه فولادی خود، علاوه بر سبکتر بودن، از مشخصات مکانیکی بهتری نیز برخوردار است و به آسانی و بدون نیاز به تجهیزات سنگین یا کارکنان زیاد نصب میشوند. این پلها در مکانهایی مانند پارک ملی ایسلند و یا گلدنگیت مورد استفاده قرار گرفتهاند. اکنون ساخت پلهای عبور وسایل نقلیه بهشکل یک کار مرسوم تجاری در آمریکای شمالی و اروپا رونق گرفته است.
هماکنون در ساخت بسیاری از پلها تماماً از کامپوزیتها استفاده میشود. یکی از موارد کاربرد کامپوزیتهای سبک، در ساخت پلهای رودخانهها و مسیرهای آبی است که در انگلستان و سایر کشورهای اروپایی مورد استقبال فراوان واقع شده است. این پلها برای عبور قایقها هستند و حملونقل و نصب آنها در نقاط دورافتاده و پست، بدون نیاز به تجهیزات بالابر سنگین ممکن میباشد.
سطح کامپوزیتی، 6 تا 7 برابر سطح بتون آرمه ظرفیت تحمل بار را دارد و این در حالی است که تنها 20 درصد وزن آنرا داراست. طول عمر آنها نسبت به مشابه فولادی و بتنی چندین برابر است. کامپوزیتها در طول دوره سرما منقبض نمیشوند و مانند آهن در محیط مرطوب زنگ نمیزنند و در محیط دریا دچار خوردگی نمیشوند. سطوح کامپوزیتی برای جایگزین کردن با سطوح قدیمی و سنتی در پلها بسیار مورد استقبال قرار گرفتهاند، چرا که دارای ساختار بهتر و بیعیبتری میباشند. این جایگزینی میتواند در زمان کوتاهی انجام شود و کمترین مزاحمت را برای ترافیک و حملونقل ایجاد نماید.
توانایی استفاده از کامپوزیتها در ساخت سازههای پیشساخته و سبکوزن باعث میشود که هزینه بنای سازه بشدت کاهش یابد. سازههای کامپوزیتی سبکوزن میتوانند در چند ساعت نصب شوند. در عوض روزها و هفتهها وقت لازم است تا پلهای متداول آهنی و بتنی به شکل سنتی مرسوم نصب گردند. وزن سبک سطوح کامپوزیتی، همچنین قابلیت تحمل بار بالاتر را برای پل فراهم میآورد. کامپوزیتها میتوانند با مقاومت بالایی که در برابر خوردگی و خستگی از خود نشان میدهند، هزینههای مربوط به تعمیر و نگهداری خود را به حداقل برسانند.
چنان که در این مقاله ارائه می گردد، فاجعه فرو ریزش پل I-35W در ایالت مینسوتا در ایالات متحده امریکا محصول بی توجهی به نتایج بازرسی های فنی و گزارشات آسیب پذیری سازه ای این پل می باشد. نتایج مطالعات اخیر در خصوص نقصهای سازه ای احتمالی ناشی از ترکهای خستگی به بهسازی و مقاوم سازی پل نیانجامید. همچنین، مقاله به بیان چگونگی تسریع فرآیند بازرسی، بهسازی و مقاوم سازی پل های امریکا، انجام برآوردهای دقیق تر هزینه این پروژه ها و تحلیل سود و زیان آنها پس از فرو ریزش پل می پردازد. بر مبنای تجارب حاصله و اطلاعات گردآوری شده در ارتباط با حادثه فرو ریزش پل I-35W، آخرین آمار رسمی پل های ایران و نیز هزینه متوسط بازسازی و ساخت مجدد پل ها، ارزیابی کلی از وضیعت پل های مختلف شهری و برون شهری ایران صورت می گیرد و با بهره گیری از اطلاعات چندین پروژه مقاوم سازی پل تخمینی از هزینه مقاوم سازی پل های کشور ارائه می گردد.
1- مقدمه
زمانی که از بهسازی و مقاوم سازی پل ها و به طور کلی ابنیه فنی راه و راه آهن در برابر بلایای طبیعی و بارهای سرویس سخن به میان می آید اغلب نگاه ها متوجه مبحث بازرسی فنی و گزارشات آسیب پذیری می شود. هر چند مبحث بازرسی فنی و گردآوری اطلاعات مقدمه فرآیند مدیریت یکپارچه پل ها می باشد لیکن در حوزه های عملی و اصولاً سیستم پایه مدیریت پل این بخش تنها بخشی از سیستم محسوب می شود که اتفاقاً نسبت به راهبردهای نگهداری کاملاً حساس و تغییر پذیر است.
به عبارتی همانگونه که از دیدگاه فن مدیریت اطلاعات یکپارچگی و انسجام اطلاعات در اولویت می باشد و یا در جمع آوری و ساماندهی اطلاعات شبکه های شریان های حیاتی، عکس العمل های وابسته آنها را نیز باید مدنظر قرار داد از نگاه مدیریت پل نیز نوع و روش بازرسی متأثر از سیاست کلی معیار ایمنی است.
لزوم توجه به بهسازی و مقاوم سازی پل ها به عنوان یکی از عمده ترین سرمایه ها در شبکه های ریلی و جاده ای از دو جنبه مورد توجه است. ابتدا همین ارزش سرمایه ای ابنیه موجود و دوم عملکرد شریان های حیاتی در هنگام بروز بلایای طبیعی و شرایط جنگی است. در این خصوص جمع آوری، سازماندهی و تحلیل صحیح اطلاعات ابزار مناسب و لازم مدیران بهره بردار و بحران خواهد بود.
با توجه به اهمیت بهسازی و عدم کفایت صرف بازرسی های فنی و تحلیل داده ها ابتدا استراتژی های نگهداری در چارچوب سیستم مدیریت پل تشریح می شود و به عنوان شاهدی بر فاجعه آمیز بودن سیاست "نگهداری عکس العملی"1 پل ها فروریزش پل I-35W مورد ارزیابی قرار گرفته است. در پایان نیز از جنبه سیاستگذاری کلان اقتصادی و ایمنی آماری رسمی از پل های موجود کشور با چند پروژه بهسازی پل قیاس می شود تا تخمینی از حجم و هزینه نگهداری استاندارد آنها حاصل شود.
2- استراتژی نگهداری در سیستم مدیریت پل
استراتژی نگهداری هر چند به عنوان مرحله ای از مراحل مختلف سیستم مدیریت پل مطرح است لیکن به جهت اهمیت و اثرگذاری بقیه بخش های سیستم را تحت تأثیر قرار می دهد. در میان مراحل گردآوری مستندات، بازرسی، نگهداری، مالی، مدیریت و پایگاه پردازش داده ها بازرسی رابطه مستقیم و دو طرفه مشهودتری با راهبرد نگهــداری دارد. به عـبارتی نتایج حاصل از عملیات بازرسی به درک مناسب تر و تدوین راهبرد متناسب کمک می کند و در عین حال از حیث شیوه، دامنه بازرسی و دوره های زمانی تکرار متأثر از آن است.
در راستای حفظ معیار ایمنی بر اساس (DECD 1976) دو راهبرد کلی "نگهداری عکس العملی" و "بازرسی سیستماتیک" تعریف می شود. روش اول به عنوان راهکار مدیریت بحران بازرسی ها را به اعضای اصلی و در سحطی محدود تعریف می کند در حالی که روش دوم یک روش پیشگیرانه محسوب شده در دوره های زمانی کوتاه تر ارزیابی و بازرسی کلی سازه را مورد توجه قرار می دهد .
هر چند تفهیم منافع مالی مدیریت و نگهداری صحیح پل ناشی از کاهش هزینه های آتی، عملکرد مناسب در شرایط بحرانی (بلایای طبیعی و نظامی) و کاهش سوانح رانندگی جهت اخذ سرمایه های بیشتر از مدیران چندان آسان نیست لیکن راهبرد عکس العملی ریسک بالایی برای مردم و استفاده کنندگان پل ها در برخواهد داشت. در راستای ایجاد تعامل بیشتر و ترسیم اهمیت راهبردهای پیشگیرانه، سیستم های پیچیده تری از مدیریت پل قابل بهره برداری هستند که در آن بر اساس نگارش یک سناریوی "چه می شود- اگر"1 تبعات و خسارات خرابی پل به هنگام شرایط اضطراری بیان شده با تخمینی از زمان بازسازی، تبعات سیاسی و منابع مالی و انسانی می توان مدیران و تصمیم گیران را نسبت به پیاده سازی خروجی سیستم ترغیب نمود.
سیستم مدیریت پل زمانی مؤثر خواهد بود که تمام ارکان ها به درستی پیاده شود. کارشناسان و مدیران پل از یک سو باید در گزارشات خود، نتایج را کاملاً شفاف و جامع ارائه کنند و از سویی دیگر دست اندرکاران و بهره برداران، التزامی عملی نسبت به پیاده سازی و تخصیص منابع آن داشته باشد.
برای تأثیر گذاری سیستم مدیریت پل باید تمامی اطلاعات لازم به عنوان ورودی در اختیار آن قرار گیرد. در مقابل این ورودی با تعامل اجزای2 BMS می تـوان خروجی شفافـی شـامل یک زمـان بندی محدود ارائه نمود. این زمان بندی محدود در حقیقت همان بعد الزام آور عمل به راهکارهای نگهداری است. براساس این خروجی پل های معیوب بر اساس نیاز تعمیرات طبقه بندی و با اولویت بندی روش های نگهداری از هیچ کار تا تخریب کامل و بازسازی پل راهکار ارائه می گردد.
همانگونه که اشاره شد این راهبرد یا خروجی سیستم در ارتباطی تنگاتنگ با مرحله بازرسی پل است از جمله فرآیندهای ضروری بازرسی پل به عنوان یک فعالیت کاملاً تخصصی تهیه اطلاعاتی برای انتخاب یک راهبرد نگهداری مناسب و تعیین نقاط بالقوه معیوب است که همچنان شفافیت و وضوح اطلاعات ثبتی مورد تأکید است.
در یک سیستم موفق پل که اطلاعات پردازش شده بازرسی و روش های نگهداری و تعمیر تدوین شده آن توسط یک الگوریتم مدوم حاوی پیشنهاداتی از صرف بودجه و برنامه ریزی استراتژی بلند مدت نگهداری باشد مرحله مدیریت جایگاه اصلی سیستم است. این مهم به ویژگی های منحصر به فرد هر پل و عوامل متعدد تأثیر گذار بر آن بازمی گردد که علیرغم طراحی آن الگوریتم مدون حضور مدیر تصمیم گیر برای اولویت بندی ها و کارشناس خبره جهت قضاوت های مهندسی را کمرنگ نمی کند.
3- معرفی پل I-35W
پروژه ساخت پل I-35W بر روی رودخانه می سی سی پی در ایالت مینسوتا (Minnesota) در ایالات متحده در سال 1964 آغاز و برای احداث آن مبلغ 5269002 دلار هزینه شد. خرپای فولادی پل متشکل از سه بخش بود؛ عرشه، روسازه و زیر سازه. پل I-35W در ماه نوامبر سال 1967 با سه محور عبوری در هر جهت به بهره برداری رسید. در سال 1988 یک محور عبوری دیگر در هر جهت به پل اضافه شد تا تغییرات ترافیکی حاصل از احداث راههای مختلف در دو طرف پل کنترل گردد. بدین ترتیب عرشه پل در هر دو جهت دارای درزی طولی موازی با امتداد عبور ترافیک بود.
طول این پل چهارده دهانه 581 متر و عرض آن 34 متر بوده است. دهانه های ورودی جنوبی (دهانه های 1تا5) از شاهتیرهای فولادی و دهانه های اصلی پل (دهانه های 6 تا 8) از خرپاهای فولادی عرشه ساخته شده بودند. دهانه های ورودی شمالی نیز از شاهتیرهای فولادی (دهانه های 9 تا 11) و دال بتنی (دهانه های (12 تا 14) تشکیل یا فته بودند. عرشه پل به مساحت تقریبی 2m 19754 دارای هشت خط عبوری (4 خط رفت و 4 جهت برگشت) و ارتفاع تراز زیر پل از تراز متوسط سطح آب می سی سی پی 19.6 متر بود. براساس آمار سال 2004 اداره راه و ترابری ایالت مینسوتا به طور متوسط روزانه 141000 خودرو از پل عبور می کرده است.
بارهای ترافیکی به دو خرپای فولادی به موازات امتداد ترافیک منتقل می شدند که طول این خرپاهای متقارن در دهانه های 6 و 8 به 81 متر می رسید. از جمله موارد منحصر به فرد در مورد این سازه استفاده از قوس های فولادی 140 متری در دهانه هفتم بوده است. خرپاهای این دهانه از اعضای جوش شده ساخته شده بود که ارتفاع تقریبی آن در کنار پایه های واقع در حاشیه رودخانه به 5. 18 متر می رسید. دو خرپای موازی امتداد عبور ترافیک به وسیله تیرهای خرپایی جوش شده جانبی کف به عمق تقریبی 7. 3 متر و تراورس های فولادی جاده روی پل به طول 85 سانتیمتر به هم متصل شده بودند. این تراورس های موازی بار عرشه و بارهای ترافیکی را به تیر خرپایی کف منتقل می نمودند. سیستم سازه ای فوق به دلیل کارکرد می سی سی پی به عنوان یک شاهراه آبی ترانزیت کالا و عدم امکان احداث پایه در رودخانه مورد استفاده قرار گرفته بود.
پل I-35W در ساعت 6:05 بعد از ظهر روز اول آگوست سال جاری میلادی به طور کامل به داخل آب های می سی سی پی فرو ریخت. در هنگام ریزش عملیات ترمیم آسفالت روسازه پل در جریان و دو محور در هر جهت مسدود و مطابق برنامه ریزی های صورت گرفته جایگزینی و نوسازی پل برای سال 2025-2020 برنامه ریزی شده بود. در خلال ریزش قسمت جنوبی پل رفتار سازه ای متفاوتی از خود بروز داد. این قسمت قریب به 15 متر به طرف شرق تغییر مکان داده در حالی که بقیه قسمت های پل به صورت درجا فرو ریخته است .
4- پیشینه بازرسی های پل I-35W
در سال 2001 به دنبال ظهور آثار خستگی که عمدتاً در نتیجه اعوجاج پیش بینی نشده تیر ورق ها به وجود آمده بود، تحقیقاتی از سوی دانشگاه مینسوتا بر روی این پل انجام گرفت. نگرانی از بروز خستگی در سیستم خرپایی اصلی (سیستم خرپای کف پل) کارشناسان را مجبور به مطالعه کلیه ترک های سیستم خرپای عرشه نمود. تنش های محاسبه شده در بسیاری از جزئیات سازه ای پل از جمله سخت کننده های جوش شده طولی، سخت کننده جوش شده به صفحات داخل اعضای کششی و لقمه ها از تنش آستانه خستگی بیشتر بودند. بر مبنای این مطالعات ترک های مشاهده شده در سیستم سازه ای پل به پدیده خستگی بی ارتباط دانسته شد. افزون بر این، نتایج مدل سازی ها احتمال بروز ترک های ناشی از خستگی را در طول عمر بهره برداری پل مردود دانست. شایان ذکر است مطالعات مذکور بر پایه عبور 15000 خودرو در روز انجام گرفت.
نکته شایان تامل در مورد نتایج این تحقیقات این است که تنش های محاسبه شده برای پل در این پژوهش از تنش آستانه خستگی بار زنده آئین نامه AASHTO بیشتر بود اما با این منطق که شرایط موجود در AASHTO ممکن است در طول عمر بهره برداری دفعات اندکی اتفاق بیفتد و با توجه به کمتر بودن چشمگیر مقادیر تنش اندازه گیری شده از تنش آستانه خستگی بار زنده آئین نامه AASHTO امکان بروز پدیده خستگی در پل مزبور مردود دانسته شد. این در حالیست که ریزش پل I-35W در ساعت اوج ترافیک روی داد و در لحظه ریزش پل ترافیک بسیار سنگینی بر روی پل در جریان بود. در پایان مطالعات، پیشنهاد شد پل هر شش ماه یکبار مورد بازرسی قرار گیرد.
در سال 2006 پل به طور کامل بازدید شد. شرکت U.R.S طی قراردادی با اداره راه و ترابری مینسوتا یک تحلیل خستگی جامع برای پل انجام داد. در نتیجه این تحلیل ها پیشنهاد شد صفحات فولادی بر روی 52 قطعه از حساس ترین و بحرانی ترین اعضای خرپایی اضافه شود و جزئیات جوش این اعضا به صورت چشمی به دقت بازرسی و نواقص موجود برطرف گردد. در نتیجه این بازرسی ها ترک های خستگی زیادی در ناحیه دهانه های ورودی و خروجی و همچنین ترک ها و نواقص سازه ای متعددی در دیگر قسمت ها مشاهده گردید. از جمله ضعف های سازه ای مشاهده شده می توان به نواقص اجرای جوش قطعات سازه ای و کاهش سطح مقطع اعضای خرپایی داخلی بر اثر خوردگی اشاره نمود.
بر اساس اظهارات وزیر راه و ترابری ایالات متحده پل I-35W در سیستم بازرسی یکپارچگی سازه ای 50 امتیاز کسب نمود که حداکثر امتیاز این سیستم بازرسی 120 می باشد. امتیاز 50 مبین آن است که سازه پل فرسوده بوده و نیاز به بهسازی داشته است اما بروز حادثه ای با این ابعاد پیش بینی نمی شد. گزارش بازرسی ترک های بحرانی که توسط تیمی از بازرسان فنی اداره راه و ترابری مینسوتا ارائه شده است مشکلات خاصی را که سبب کسب امتیاز پایین پل I-35W شد، تشریح می نماید. امتیاز پایین را می توان به خوردگی اعضا در ناحیه ای که لایه رنگ پل کیفیت خود را از دست داده است، نواقص جوشکاری اعضای فولادی خرپایی و تیرهای کف، عدم حرکت تکیه گاه ها مطابق طراحی های اولیه و نیاز به ترمیم ترک های ناشی از خستگی در تیرهای خرپایی جانبی و دهانه های ورودی نسبت داد.
به دنبال این حادثه فاجعه بار مقامات قوانین مربوط به ایمنی سازه ها را مورد بررسی مجدد قرار می دهند تا در صورت نیاز قوانین سخت گیرانه تری اعمال گردد.
5- بازرسی عمومی پل ها در ایالات متحده
در ایالات متحده مجموعاٌ تعداد000 600 پل ثبت شده وجود دارد. براساس استاندارد ملی بازدید پل ها در امریکا (NBIS)، که در اوایل دهه 70 به اجرا گذارده شده است، پل هایی با طول بیش از 6 متر که در جاده های عمومی کشور قرار دارند باید هر دو سال یکبار مورد بازدید قرار گیرند. ایمنی سازه ها با انجام بازرسی ها و رتبه بندی اعضایی همچون عرشه، رو سازه و زیر سازه تأمین می گردد. این در حالیست که اگر پل در شرایط بسیار خوبی باشد، بازرسی ها هر 4 سال یکبار انجام می پذیرد. تقریباً 83% از پلهای امریکا هر دو سال یکبار، 12% یکبار در سال و 5% هر 4 سال یکبار بازرسی می گردند. پس از فروریزش پل I-35W از آنجا که علت حادثه به طور قطع مشخص نمی باشد، ادارات راه و ترابری کلیه ایالت های امریکا موظف به بازدید فوری پل هایی با سیستم سازه ای مشابه پل I-35W شدند.
پس از انجام بازدیدهای فنی کارایی سازه ای و یا نواقص سازه ای پل ها مشخص می گردد. وجود ناکارایی سازه ای بدین معناست که برخی از المانهای پل نیاز به کنترل منظم و یا تعمیر دارند. ناکارایی سازه ای به معنی ناایمن بودن و یا احتمال ریزش کلی پل نمی باشد بلکه لزوم پایش سازه پل، انجام بازدیدهای منظم و بهسازی پل را بیان می نماید . اکثر پل های دارای نواقص سازه ای در جریان بهسازی و اجرای تعمیرات باز می مانند و ترافیک بر روی آنها در جریان است. در صورتی که بازرسان شرایط سازه ای پل را ناایمن تشخیص دهند ساعات عبور خودروها از روی پل را محدود می کنند و یا پل را به کل می بندند.
بر اساس آخرین گزارش اداره را ه و ترابری ایالت Minnesota طی سالهای 2004-2006 بطور متوسط سالانه 2300000 دلار صرف بازرسی پلهای این ایالت شده است. این در حالیست که با شرایط امروز احداث تنها یک پل با ابعاد پل I-35W بطور تقریبی 20000000 میلیون دلار هزینه در بر خواهد داشت. به دنبال بروز این حادثه نگرانی ها در مورد ایمنی سازه پل ها افزایش یافته است. آمارهای منتشره از سوی انجمن مهندسان عمران امریکا حاکی از آن است که تعمیر تمامی پل هایی که دارای نقص سازه ای هستند بیش از 188 میلیارد دلار هزینه خواهد داشت (4/9 میلیارد دلار در سال به مدت 20 سال). حدود 3/8 میلیارد دلار از این مبلغ جهت رفع نواقص سازه ای ناش از خوردگی اجزای بتنی و فولادی صرف می شود. این ارقام بیانگر این واقعیت است که با تخصیص منابع مالی مناسب که در مقایسه با هزینه احداث پلها ناجیز می نماید می توان در ارتباط با وضعیت سازه ای و ایمنی پلها اطلاعات ارزشمندی حاصل و با اولویت بندی پروژه ها تدابیر لازم را جهت ترمیم، بهسازی و مقاوم سازی آنها اتخاذ کرد .
6- درسهایی برای بهسـازی و مقـاوم سـازی پلهـای ایـران
بر اساس تجربیات موجود در پل I-35W به عنوان شاخصی از پل های بزرگراهی آمریکا که افزون بر 80% آنها هر دو سال حداقل 1 بار مورد بازرسی قرار می گیرند باید به نحوی جدی نسبت به رخداد حوادث مشابه در پل های کشور حساس بود. برابر آخرین آمار منتشر شده وزارت راه و ترابری ایران تعداد پل های سراسر کشور بالغ بر 300 هزار دهانه به طول هزار و پانصد کیلومتر است. شواهد موجود به خوبی بیانگر این ادعاست که بازرسی های منظم پل های شهری، بزرگراهی، راه آهن و راه های اصلی به جز در موارد خاصی که شواهد بارزی از خوردگی یا علایم تخریب دیگر مشاهده شده است، انجام نمی پذیرد. با این وجود حتی نشریه 367 (شناسنامه فنی پل ها) در سال 1386 به صورت رسمی از طرف معاونت برنامه ریزی و نظارت راهبردی ریاست جمهوری منتشر شده است نیز تا زمان نگارش این مقاله در میان دستگاه های بهره بردار و کارفرمایی تنها توسط معاونت فنی و عمران شهرداری تهران لازم الاجرا شده است. این در حالیست که اطلاعات فنی هر پل مطابق این نشریه در مرحله طراحی تنها در حد شناسایی پل می باشد و در صورت تکمیل دفترچه در سنوات بعدی به عنوان بازرسی فنی سازه و اجزای غیر سازه ای، همچنان بند های الزام آوری جهت زمان بندی برای بازدیدهای دوره ای و استراتژی مشهود سیستم مدیریت پل وجود ندارد.
در تصویر شماره 2 تقسیم بندی استان های کشور براساس تعداد پل های استاندارد مشاهده می شود که نتیجه آمار معاونت آموزش، تحقیقات و فن آوری وزارت راه می باشد. در این بین با انتخاب 3 پل کلاک، آلی در و ریچکان از دو استان تهران و سیستان و بلوچستان با حداکثر و حداقل تراکم پل های استاندارد شاخص های بازرسی و تعمیر پل های ایران بررسی می گردد.
پل کلاک با سطح زیر بنای بالغ بر 7200 مترمربع و طول کلی 697 متر یکی از مهم ترین تقاطع های غیر همسطح بزرگراهی کشور بر روی شاهراه تهران- کرج می باشد. بزرگ ترین عامل تخریب این پل خوردگی بتن و فولاد توسط یون کلراید تحت اثر سیستم ضعیف جمع آوری و انتقال آب های سطحی بوده است.
پل های ریچکان و آلی در بر روی محور خاش- ایرانشهر نیز به ترتیب دارای طول70 متر و 150 متر می باشند. این پل ها در سالهای 1353 تا 1355 ساخته شده اند و ضعف اجرایی و آبشستگی پایه ها مهم ترین دلایل خرابی این پل ها بوده اند.
2- تقسیم بندی استان های کشور بر اساس تعداد پل های استاندارد شده
در جدول شماره 1 برخی شاخصه های خرابی و هزینه تعمیر پل ها به صورت کلی و برحسب متر طول ارائه شده است. در حقیقت هر یک از این پل ها در صورتی که طی دوره ها منظمی بازدید و به صورت متوالی مورد بازسازی های جزئی قرار می گرفتند این حجم از هزینه ها را برای نگهداری و تعمیر در بر نمی داشتند.
نکته قابل تامل در مورد این پل ها این است که در هر سه پل، کارفرما خواستار بازسازی پل تا حد پیش از بهره برداری(مطابق مشخصات زمان تحویل پل) بوده است و عملاً هیچ یک از این پل ها جهت زمین لرزه محتمل مقاوم سازی نشده اند. انتخاب این هدف بهسازی به منظور عدم بکارگیری روش محاسبه حق الزحمه مطالعات مقاوم سازی لرزه ای پل های موجود کاملاً موثر بوده است.
این جدول همچنین حاوی هزینه تقریبی ساخت مجدد این پل ها با سیستم و مشخصات مشابه است که نشان می دهد هزینه تعمیر چنین پل هایی که مسئولین را نسبت به ادامه بهره برداری نگران ساخته است بالغ بر 12 تا 19 درصد از هزینه ساخت پل های جدید است و به عبارتی آستانه تحریک بهره برداران پل های شهری و برون شهری نسبت به خرابی پل ها را بیان می کند.
جدول1- مقایسه هزینه تعمیر و نوسازی پل های کلاک، آلی در و ریچکان
نام پل | طول کلی (m) | سیستم سازه ای | خرابی های عمده | هزینه کلی بهسازی (میلیون ریال) | هزینه بهسازی به ازای مترطول (میلیون ریال) | هزینه ساخت پل برابر فهرست بهاء 1386 | درصد هزینه تعمیر به هزینه نوسازی |
کلاک آزاد راه تهران-کرج | 697 | مرکب تیر پیش ساخته بتنی و شاهتیر فولادی | خوردگی در تیرهای فولادی و خوردگی شدید در تیرهای بتنی و سرستون ها | 11877 | 17 | 72000 | 5/16% |
ریچکان مسیر اصلی خاش- ایرانشهر | 70 | خرپای فولادی و دال بتنی | آبشستگی پایه ها و خوردگی شاهتیرها ضعف سرستون | 1890 | 0/27 | 10080 | 8/18% |
آلی در مسیر اصلی خاش- ایرانشهر | 150 | خرپای فولادی و دال بتنی | ناپایداری کوله ها، خوردگی و اعوجاج شاهتیرها و ضعف سرستون | 2592 | 3/17 | 21600 | 12% |
7- نتیجه گیری:
· بر اساس رخداد فروریزش پل I-35W در سال 2007 که چندین مرحله مورد بازرسی های فنی کلی قرار گرفته بود لزوم بکارگیری سیستم جامع مدیریت پل به اثبات می رسد که شامل راهبرد الزام آور نگهداری نیز باشد.
· انتخاب راهبرد های پیگیرانه نگهداری و بهسازی پل ها با توجه به اهمیت شریان حیاتی مربوط به پل نسبت به هر روش مقابله با بحران ارجحیت دارد و در این زمینه بکارگیری سناریو های what-if توصیه می شود.
· با توجه به انتشار نشریه 367(شناسنامه فنی پل ها) انتشار بخشنامه مکملی که شامل راهبرد های جامع نگهداری و سیستم مدیریت پل باشد الزامی بنظر می رسد.
· درک لزوم بهسازی لرزه ای پل ها همزمان با ترمیم دیگر خرابی های موجود پل در میان کارفرمایان و بهره برداران از اهمیت ویژه ای برخوردار است چرا که بنابر رویکرد موجود به جهت کاهش هزینه های مطالعاتی
· بنابر مطالعات و پروژه های اجرایی شاهد در این مقاله، به ازایی بازرسی، نگهداری و ترمیم 300هزار دهانه پل موجود در کشور به طول 1500 کیلومتر که از زمان ساخت بیش از 50 درصد آن ها افزون بر 25 سال می گذرد به منابع مالی برابر هیجده هزار میلیارد ریال ظرف مدت 25 سال نیاز خواهیم داشت و به عبارتی بنابر این تخمین مقدماتی دستگاه های بهره بردار باید سالانه 720 میلیارد ریال صرف بازرسی و انجام راهبردهای پیشگیرانه نگهداری پل نمایند.
علیرغم استفاده از مصالح و تکنولوژی پیشرفته و صرف هزینه های هنگفت در طراحی و ساخت پل ها هرساله شاهد شکست و یا تخریب پلهای زیادی در دنیاو در کشورمان در اثر وقوع سیلاب هستیم. شکست و تخریب پلها علاوه بر خسارات مالی و گاهی هم جانی راه ارتباطی به نقاط سیل گیر و محتاج کمک رسانی را قطع می کند و خسارتها را دو چندان می نماید.
طبق بررسیهای انجام شده در اکثر موارد علت شکست پلها عبارتند از:
این موضوع در مراحل اول و دوم مطالعات طراحی به خوبی رخنمون داشته اما در اجرا متاسفانه فاصله قابل توجهی میان دانش نیروهای بخش طراحی با دانش نیروهای فنی دستگاه های نظارتی و پیمانکاران به وجود آمده که خود عامل مهمی در برآورده نشدن کیفیت مناسب در هنگام اجرای سازهها شده است. البته این نکته نیز دور از ذهن نماند که گاهی اوقات نیز فاصله مذکور به طور معکوس و به دلیل عدم آگاهی بخش طراحی از روشها و ظرفیتهای موجود در صنعت ساخت و ساز به طرحهایی با قابلیت های اجرایی پایین ختم گردیده است. مقاله حاضر به چند نکته از هر دو حیطه مورد اشاره در ارتباط با طراحی و اجرای پلهای بتن مسلح می پردازد.
قطع پیوستگی آرماتور دورپیچ در ناحیه تشکیل مفصل خمیری در پای ستونهای پل
برای استهلاک انرژی زلزله آیین نامه ها اجازه می دهند نواحی از پیش تعیین شدهای در سازهها دچار تغییر شکلهای خمیری با حفظ سختی، مقاومت و شکلپذیری در چرخه های رفت و برگشتی امواج زلزله گردند. در پلها این نواحی بطور معمول در زیر سازه (پایه ها) انتخاب می گردند. بطور خاص در ستونهای بتنی پایهها این تغییر شکلها در پای ستونها و در طول ناحیه تشکیل مفصل خمیری اتفاق می افتند. به منظور تامین شکل پذیری لازم در مناطق با خطر لرزهای زیاد، آیین نامهها همپوشانیoverlap آرماتورهای دور پیچ در ناحیه تشکیل مفصل خمیری در پای ستون را ممنوع کردهاند. اما در شکل ذیل مشاهده می گردد که جدا از مساله همپوشانی ، پیمانکار برای سهولت اجرا و به دلیل عدم آگاهی از این نکته اصولی، حتی آرماتورهای دورپیچ را هنگام اجرای فونداسیون درست در پای ستون قطع نموده است. انقطاع ایجاد شده باعث کاهش تنشهای محصور کننده در پای ستون شده و عامل بسیار مهمی در کاهش قابل توجه شکل پذیری و ناپایداری پایه پل در هنگام زلزله خواهد بود.
وصله آرماتور طولی در ناحیه تشکیل مفصل خمیری در پای ستونهای پل
بر اساس فلسفه مورد اشاره در قسمت قبل و مطابق مقررات آیین نامه ها وصله آرماتور طولی ستون فقط در ناحیه نیمه میانی ارتفاع ستون مجاز می باشد. لازم به توضیح است که حداقل طول وصله 60 برابر قطر آرماتور طولی بوده و باید ضوابط دورپیچی ویژه برای آن اعمال گردد. متاسفانه در شکل زیر مشاهده می گردد که وصله آرماتور دقیقاً در ناحیه غیر مجاز ستون قرار گرفته و آرماتورهای دورپیچ نیز در فونداسیون قطع شدهاند. موضوع اخیر از مهمترین عوامل خرابیهای مشاهده شده در زلزله ها در اکثر نقاط دنیا می باشد.
عدم تامین طول لازم برای نشیمن تیرهای بتن مسلح پیش ساخته عرشه پل
در پلهای متشکل از عرشه با تیرهای بتن مسلح پیش ساخته در کشورمان استفاده از تکیه گاه نئوپرن الاستومری برای نشیمن تیرها در محل کولهها و پایه ها بسیار رایج می باشد. انتظار می رود در هنگام زلزله، تغییر مکان طولی پل به دلیل عدم وجود میرایی در این نوع نشیمنگاهها قابل توجه باشد. لذا آیین نامهها مقرر میدارند که طول نشیمن عرشه بر روی کوله و پایه پل از حداقل میزانی برخوردار باشد. این مهم به دلیل جلوگیری از سقوط عرشه از روی کوله و پایه به داخل دهانه میباشد. متاسفانه در شکل زیر مشاهده میگردد که طول مذکور رعایت نشده است. درحالیکه این موضوع در هنگام تهیه نقشه های اجرایی و زمان اجرای کوله به راحتی و با تامین براکت در دیواره کوله امکان پذیر بوده است.
جانمایی نادرست نئوپرن در زیر تیرهای پیش ساخته عرشه پل
مطابق ضوابط آیین نامه ها، محور نئوپرنهای چهارضلعی به دلیل جلوگیری از اعمال فشار غیر یکنواخت خارج از محور باید بر محور تیر منطبق بوده و اضلاع آن به موازات اضلاع تیر باشند. متاسفانه در شکل زیر مشاهده می گردد که هر دو مورد فوق در هنگام جانمایی نشیمنها رعایت نشده و نئوپرنها با خروج از مرکزیت قابل توجه نصب شدهاند. این موضوع منجر به کاهش عمر مفید بهرهبرداری از نئوپرن و ایجاد تنشهای قابل توجه در انتهای تیر می گردد.
عمل آوری نامناسب بتن عرشه و ایجاد ترکهای انقباضی
در برخی موارد مشاهده می گردد که پیمانکاران برای عمل آوردن بتن دال عرشه از پهن نمودن گونی و مرطوب کردن آن استفاده می نمایند. در صورت وزش باد و با توجه به وجود منافذ باز در سطح گونی، در عمل رطوبت آب به سرعت تبخیر شده و در نتیجه ترک های سطحی فراوانی در سطح دال ایجاد می گردند. شکل زیر به وضوح این مساله را نشان می دهد. ترکهای مذکور باعث نفوذ مواد خورنده به سطح آرماتورهای دال با پوشش کم شده که به دنبال آن خوردگی آرماتور، پکیدن بتن اطراف آن و کاهش عمر مفید بهرهبرداری از پل به وقوع می پیوندد. به عنوان یک راه حل پیمانکاران می توانند بجای گونی یا همراه آن از نایلون های پلاستیکی استفاده نمایند به طوری که بخار آب در زیر پلاستیک محبوس شده و باعث عملآوری بتن دال عرشه گردد. به علاوهعملیات بتنریزی زمانی انجام شود که سرعت باد کم بوده و تابش شدید خورشید وجودندارد.
اجرای نامناسب درزهای انبساط
یکی از مساله سازترین قسمتهای پلها در زمان بهرهبرداری، درزهای انبساط پل می باشد. هر یک از ما روزانه چندین بار ضربه وارد بر اتومبیل خود را در هنگام عبور از همین درزها تجربه می نماییم . در شکل زیر یک نمونه درز انبساط در حال اجرا نشان داده شده است. زمان اجرای درزهای انبساط بطور معمول همزمان با بتن ریزی دال می باشد، در این هنگام با توجه به دقت کم لحاظ شده در اجرای درز انبساط و همچنین عدم وجود آسفالت پوششی، رویه درز و بتن اطراف آن دارای پستی بلندی هایی خواهد شد که در هنگام اجرای آسفالت امکان اصلاح آنها وجود نخواهد داشت. لذا توصیه می گردد محدوده درز انبساط تا زمان اجرای آسفالت پل، بتن ریزی نشده و در هنگام اجرای آسفالت با تنظیم مناسب درز و آنگاه ریختن بتن مرحله دوم از هم تراز بودن سطح درز و آسفالت اطمینان حاصل گردد. به علاوه از اجرای درزهای فولادی با پروفیل و ورق پوششی به دلیل شکست جوشهای اتصالی و ایجاد مشکلات فراوان احتراز شده و به جای آنها از درزهای لاستیکی مسلح استفاده شود.
اجرای نامناسب نرده های پل
نرده های پل ها به طور معمول دارای پایه های فولادی جعبه ای شکل در فواصل معین می باشند که توسط صفحه ستون به بتن پیاده رو اتصال می یابند. در شکل زیر مشاهده می گردد که به دلیل عدم پیش بینی فاصله مناسب بین سطح بتن نهایی و صفحه ستون به منظور گروتریزی و تنظیم آن، نصب پایه دچار مشکل شده و پیمانکار مجبور شده است از صفحات پوششی پرکننده برای تامین فاصله استفاده نماید. این موضوع باعث کاهش مقاومت پایه فولادی در هنگام ضربه وسایل نقلیه می گردد.
پل هاى دهانه طویل مستحکم شده با کابل
در آغاز هزاره سوم میلادى 17 پل در جهان وجود داشته است که دهانه آنها بیش از هزار متر مىشود. این پل ها یا در حال بهره بردارى هستند و یا ساختمان آنها به ما پایان نرسیده است .این پلها همه از نوع پل های معلق هستند و تعداد آنها در کشورهای مختلف به ترتیب زیر است.
در آمریکا و ژاپن چهار پل ، در انگلستان ، ترکیه و چین هر یک دو پل و در پرتغال , دانمارک و سوثد هر یک ، یک پل وجود دارد.
از بین پلهاى معلق , پل هاى زیر حائز اهمیت هستند :
اول , پل عظیم آکاشى -کاى کیو در ژاپن که دهانه اصلى آن 1991 متر است و در ماه آوریل ساله 1996 آماده بهره بردارى شده است . این پل در نزدیکى کوبه در راه کوبه - ناروتو بین جزایر هونشو و شىکوکو قرار دارد.
دوم , پل بزرگ کمرى شرقى در دانمارک که دهانه اصلی آن 1624 متر و در ماه ژوثن 1998 اماده استفاده شده است .
در بین پل هاى معلقى که در مسیر شاهراه ها و راه اهن قرار دارند ، پل هاى زیر حایز اهمیت هستند :
اول ، پل تسینک ما در هنگ کنگ که دهانه اصلی آن 1377 متر و در سال 1997 بهره بردارى از آن آغاز شده است .
دوم ، پل مینامى - بیزان ستو در ژاپن که در راه کوجى ما – ساکاید ، بین جزایر هونشو و شی کوکو قرار دارد . . این پل در حدود صد کیلومترى غرب کوبه واقع شده است و دهانه اصلى آن 1100 متر است و در سال 1998 بهره برداری از آن شروع شده است .
پل هاى کابلى
دهانه پلهای کابلى امرزه به هزار متر هم رسیده است . در حال حاضر در جهان 13 پل کابلی وجود دارد که ساختمان آنها به پایان رسیده و یا در شرف اتمام است .
دهانه این پلها بین 1000-500 متر است .
در بین پل هاى کابلی ، پل هاى زیر حایز اهمیت است :
اول تاتارا که دهانه اصلى آن 890 متر است و در سال 1999 مورد بهره بردارى قرار گرفت . این پل در ژاپن و در 200 کیلومیرى غرب کوبه در راه انوموچی-ایمابارى بین جزایر هونشو و شی کوکو قرار دارد .
دوم , پل پونت د.نرماندى در فرانسه با دهانه اصلى 856 متر قرار دارد و در سال 1995 ساختمان آن به پایان رسیده است .
پل سنگ تراش ها
پل سنگ تراش ها در هنگ کنگ به احتمال قوى یک پل کابلی است که طول دهانه آن بیش از هزار متر مىشود .
در بین پلهاى کابلى که در مسیر شاهراه ها و یا راه آهن قرار دارد , پلهاى زیر حایز اهمیت است :
اول پل ارسوند بین دانمارک و سوئد واقع است و دهانه آن 430 متر مىشود که در سال 2000 آماده بهره بدارى شده است .
دوم , پل کاپ شوى مون در هنگ کنگ واقع است که دهانه آن 430 متر مىشود و در سال 1997 بهراه برداری از آن آغز شد است . این پل در نزدیکى پل سینگ ما قرار دارد .
در بین پل هاى کابلى یک ستونى ، مقام اول به پل سوگورت در روسیه تعلق میگیردکه دهانه آن 408 متر است و بهره بردارى از آن سال 2000 آغاز شده است . مقام دوم را نیز پل کارنالى در نپال با دهانه اى به طول 325 متر به خود اختصاص مىدهدکه از سال 1992 مورد استفاده قرار گرفته است .
پروژه پل اولیاناوسک که قرار بود یک ستونى و با دهانه اى به طول 407 متر ساخته شود با پل شاه تیری با چهار دهانه هر کدام به طول 203.5 متر تعویض شود .
این مقاله با زبانی ساده و قابل فهم به بررسی پلها می پردازد. امید است مورد رضایت شما قرار گیرد. بدون شک تا به حال پلی را دیده اید و یا به احتمال زیاد از روی یکی از آنها عبور کرده اید. حتی اگر شما تخته یا کنده درخت را برای جلوگیری از خیس شدن خود بر روی آب قرار دهید در واقع شما یک پل ساخته اید. حقیقتاً پل ها در همه جا وجود دارند و در واقع یک بخش طبیعی وبدیهی از زندگی روزمره ی ما را تشکیل می دهند. یک پل مسیری را بر روی مانع ایجاد می کند که این موانع می تواند رودخانه، دره، جاده، خطوط راه آهن و ... باشد.در این مقاله ما سه نوع اصلی از پل ها را مورد مطالعه و بررسی قرار خواهیم داد که شما می توانید بفهمید که هرکدام چگونه کار می کنند. نوع پل بکار رفته در یک مکان به نوع مانع موجود در آنجا بستگی دارد. معیار اصلی در تعیین نوع پل وسعت و گستردگی آن مانع می باشد. چه مسافتی میان طرفین مانع وجود دارد؟ این مسئله، فاکتور اصلی در تعیین نوع پلی است که قرار است در آن محل احداث شود. با سپری شدن زمان و مطالعه ای مقاله علت آن را متوجه خواهید شد.
*** سه نوع اصلی از پلها موجودند: پل تیری پل قوسی پل معلق
تفاوت عمده ی این سه پل در فاصله دهانه ی پل است. دهانه، فاصله ای است بین پایه های ابتدایی و انتهایی پل، اعم از اینکه آن ستون، دیوارهای دره یا پل باشد. طول پل تیری مدرن امروزه از 200 پا (60متر) تجاوز نمی کند. در حالی که یک پل قوسی مدرن به 800 تا 1000 پا (240 تا 300 متر) همو می رسد. پل معلق نیز تا 7000 پا طول دارد.چه عاملی سبب می شود که یک پل قوسی بتواند درازای بیشتری نسبت به پل تیری داشته باشد؟ و یا یک معلق بتواند تقریباً تا 7 برابر طول پل قوسی را داشته باشد. جواب این سوال زمانی بدست می آید که بدانیم چگونه انواع پلها از دو نیروی مهم فشاری و کششی تاثیر می پذیرند.
نیروی فشاری : نیرویی است که موجب فشرده شدن و یا کوتاه شدن چیزی که بر روی آن عمل می کند می شود.
نیروی کششی : نیرویی است که سبب افزایش طول و گسترش چیزی که بر روی آن عمل می کند، می گردد.
در این زمینه می توان از فنر به عنوان یک مثال ساده نام برد. زمانی که آن را روی زمین فشار می دهیم و یا دو انتهای آن را به هم نزدیک می کنیم، در واقع ما آن را را متراکم می سازیم. این نیروی تراکم یا فشاری موجب کوتاه شدن طول فنر می شود. و نیز اگر دو سر فنر را از یکدیگر دور سازیم، نیروی کششی در فنر ایجادشده، طولفنر را افزایش می دهد.نیروی فشاری و کششی در همه پل ها وجود دارند و وظیفه طراح پل این است که اجازه ندهد این نیروها موجب خمش و یا گسیختگی گردد. خمش زمانی اتفاق می افتد که نیروی فشاری بر توانایی شئ در مقابله با فشردگی غلبه کند. بهترین روش در موقع رویارویی با این نیروها خنثی سازی،پخش و یا انتقال آنهاست. پخش کردن نیرو یعنی گسترش دادن نیرو به منطقه وسیع تری است چنانکه هیچ تک نقطه مجبور به متحمل شدن بخش عمده ی نیروی متمرکز نباشد. انتقال نیرو به معنی حرکت نیرو از یک منطقه غیر مستحکم به منطقه مستحکم است، ناحیه ای که برای مقابله با نیرو طراحی شده و منظور گردیده است. یک پل قوسی مثال خوبی برای پراکندگی است حال آنکه پل معلق نمونه ای بارز از انتقال نیروست.
پلهای تیری : یک پل تیری، اساساً یک سازه افقی مستحکم است که بر روی دو پایه نصب شده است و این پایه ها، هر یک در انتهای طرفین پل قرار دارند. وزن پل و هرگونه وزن اضافی دیگر که بر روی پل اعمال می شود، مستقیماً توسط پایه ها تحمل می شوند.
فشار : نیروی فشاری خود را در بالای عرشه پل یا جاده نمایان می سازد. این نیرو موجب می شود که بخش بالایی عرشه کوتاه- تر گردد.
کشش : برآیند نیرو فشاری در بخش بالایی عرشه به ایجاد نیروی کششی در بخش پایینی عرشه پل منجر می شود. این کشش موجب افزایش طول در بخش پایینی پل می شود.
پراکندگی : بسیاری از پلهای تیری که شما می توانید آنها را در بزرگراهها بیابید، برای تحمل بار از تیرهای بتونی یا فولادی بهره می گیرند. اندازه تیر و بویژه ارتفاع تیر بر حسب مسافتی که تیر دارد محاسبه می شود.با افزایش ارتفاع تیر، به مقدار مصالح بیشتری برای پراکنده کردن کشش مورد نیاز است. طراحان پل برای ایجاد تیر های بلند از شبکه های فلزی یا خرپا بهره می گیرند. این خرپا به تیر استحکام داده و توانایی آن را در پخش کردن نیروی فشاری یا کششی افزایش می دهد. زمانی که تیر شروع به متراکم شدن می کند، این نیرو در میان خرپا پخش می شود. به غیر از خلاقیت موجود در خرپا، پل تیری در میزان طول خود محدود است. با افزایش طول آناندازه خرپا نیز می بایست افزایش یابد تا زمانی که خرپا به نقطه می رسد که دیگر نمی تواند وزن خود را تحمل کند.
انواع پل های تیری : پل های تیری به سبک های بسیار زیادی ساخته می شود. نوع طراحی، مکان و چگونگی ساخت یک خرپا، تعیین کننده نوع یک خرپاست. در بدو انقلاب صنعتی، احداث پلهای تیری در ایالات متحده با سرعت توسعه یافت. طراحان با طرحهای نوین و سازه های مختلف و متعدد این حرفه را رونق بخشیدند. پل های چوبی جای خود را به پلهای فلزی یا نیمه فلزی دادند. این نمونه های متنوع از خرپا ها گامهای موثری را در جهت پیشرفت در این زمینه برداشت. یکی از ابتدایی ترین و مشهور ترین آنها خرپای «هاو»1 بود که در سال ١8٨۴ توسط «ویلیام هاو»2 طراحی و ابداع شد.شهرت ابداع جدید وی در طرح خرپایش نبود، چرا که مشابه طرح kingpost بود. چگونگی استفاده از تیرهای آهنی عمودی با مجموعه ای از تیر های چوبی مورب طرح او بود که مورد توجه قرار گرفت. بسیاری از پلهای تیری امروزه هنوز از طرح هاو در خرپایشان استفاده می کنند.
مقاومت خرپا : یک تیر به تنهایی هرگونه فشردگی یا کشش را در بر خواهد گرفت. بیشترین فشردگی در بالاترین نقطه تیر و بیشترین کشش در در پایین ترین نقطه تیر است. در وسط تیر فشردگی و کشش کمتری وجود دارد.اگر تیر طوری طراحی شود که بیشترین مقدار مصالح در بالا و پایین تیر و در وسط تیر مصالح کمتری مصرف شود، بهتر خواهد توانست نیروهای کششی یا فشاری را تحمل کند. ( در توضیح می توانیم بگوییم که تیر های I شکل مستحکم تر از تیر های مستطیلی ساده است).مرکز تیر از عضو های مورب خرپا تشکیل شده طوری که بالا و پایین خرپا نشان دهنده بالا و پایین تیر است. با نگرش به خرپا به این شیوه ما قادریم ببینیم که بالا و پایین تیر مصالح بیشتری نسبت به مرکز آن مصرف می کند(به این دلیل که مقوای چین دار خیلی مستحکم است).در اضافه به مطالب فوق در مورد تاثیرات خرپا، علت دیگری نیز وجود دارد دالّ براینکه چرا خرپا مستحکم تر از تیر است: یک خرپ توانایی پخش کردن نیرو را دارد. خرپا طوری طراحی شده است که به دلیل داشتن تعداد زیادی از مثلث ها _که به طور معمول در آن مورد استفاده قرار می گیرد_ هم می تواند یک سازه بسیار مستحکم ایجاد کند و هم کار انتقال نیرو را از یک نقطه به منطقه وسیعی انجام دهد.
پل قوسی : یک پل قوسی سازه ای است به شکل نیم دایره که در هر طرف آن نیم پایه (پایه های جناحی) قرار دارد. طراحی قوس طوری است که به طور طبیعی وزن عرشه پل را به نیم پایه ها منتقل و منعطف می کند.
فشار : پلهای قوسی همواره تحت فشار قرار گرفته اند. نیروی فشاری همواره در امتداد قوس و به سمت نیم پایه ها وارد می شود.
کشش : کشش در یک قوس ناچیز و قابل اغماض است. خاصیت طبیعی خمیدگی قوس و توانایی ان در پخش نیرو به بیرون، به طور قابل ملاحظه ای تاثیرات کشش را در قسمت زیرین قمس کاهش می دهد. هرچند با زیاد شدن زاویه ی خمیدگی ( بزرگتر شدن نیمدایره قوس) تاثیرات نیروی کششی نیز در آن افزایش می یابد.همانطور که اشاره شد، شکل قوس به تنهایی موجب می شود که وزن مرکز عرشه پل به پایه های جناحی منتقل شود. مشابه پلهای تیری محدوده ی اندازه پل در مقاومت پل تاثیر گذاشته و در نهایت بر ان چیره خواهد گشت.
انواع پلهای قوسی
پراکندگی : انواع قوس ها محدود هستند. امروزه قوس هایی مانند «رمان»3 ، «باروک»۴ و «رنسانس»۵ وجود دارند که همه آنها از نظر معماری و ظاهری متمایز هستند ولی از نظر ساختار یکسانند. میزان مقاومت این پلها به شکل هندسی آنه بستگی دارد. یک پل قوسی احتیاج به هیچگونه تکیه گاه یا کابل ندارد. و قوسهایی که از سنگ ساخته شده است حتی نیازی به ساروج یا ملاط نیز ندارد. در گذشته نیز رومیان باستان پلهای قوسی (پل آب بر) ساخته اند که هنوز هم پابرجا هستند و سازه های آنه امروزه نیز با اهمیت به شمار می آید.
پل معلق : پل معلق پلی است که توسط کابل ها (یا ریسمانها یا زنجیرها) در عرض رودخانه (یا در هر جایی که مانع وجود داشته باشد) کشیده شده اند و عرشه توسط این کابل ها معلق مانده است. پل های معلق مدرن دو برج در میان پل دارند که کابل ها آن را می کشند. بنابراین برج ها بیشترین وزن جاده را تحمل می کنند.
نیروی فشاری : نیروی فشاری عرشه پل معلق را به سمت پایین متراکم می سازد در نتیجه این نیروی فشاری به برجها وارد می آیند. اما از آنجا که این یک پل معلق است، کابلها این نیروی فشاری را از برجها گرفته و آن را در بین خود پراکنده می کنند. و آن را به زمین منتقل می کنند، جایی که آنها محکم بسته شدند.
کشش : کابلهایی که میان دو لنگرگاه خود یعنی تکیه گاهها قرار گرفته اند، دریافت کننده نیروی کششی هستند. وزن پل و حمل و نقل روی آن سبب می شود که این کابل ها به شدت کشیده شوند. تکیه گاهها نیز تحت کشش هستند ولی از آنجا که همانند برجها، محکم به زمین بسته شده اند، کشش موجود در آنها پراکنده می شود. تقریباً همه پلهای معلق به غیر از کابل ها از یک سامانه خرپا نیز بر خوردارند که در زیر عرشه پل قرار گرفته است (Deck truss). این سامانه موجب استحکام بیشتر عرشه و کاهش تمایل سطح جاده به نوسان و مواج شدن می شود.
انواع پلهای معلق : پلهای معلق به دو شکل طراحی می شوند: پل معلقی که به شکل M است و نوع کم کاربردتری که به صورت «کابل ایستاده»6 طراحی شده که بیشتر شبیه A است. پلهای کابل ایستاده دیگر مانند پلهای معلق معمولی نیازی به دو برج و چهار تکیه گاه ندارند. در عوض کابلها از سمت جاده به بالای برج محکم بسته شده اند. در هر دو نوع پل، کابلها تحت کشش هستند.
نیروهای دیگر در پل : ما در مورد دو نیروی بزرگ و مهم فشاری و کششی در طراحی پل بسیار صحبت کردیم. تعداد بسیار زیاد دیگری از نیروها در پل وجود دارند که در طراحی پل باید مد نظر قرار گرفته شوند. این نیرها معمولاً به محل مشخصی بستگی داشته و یا به نوع پل مرتبط است.
نیروی گشتاوری : نیروی گشتاوری نیروی چرخشی یا پیچشی و یکی از نیروهایی است که به طور موثر در پلهای قوسی و تیری وجود ندارد ولی به میزان قابل ملاحظه ای در پلهای معلق وجود دارد. شکل طبیعی قوس و خرپاهای موجود در پلهای تیری اثرات مخرب این نیرو را از بین می برد. پلهای معلق به دلیل معلق بودن در هموا (توسط کابلها) در برابر این نیروی گشتاوری بخصوص در هنگام وزش بادهای تند بسیار اسیب پذیر است.همه ی پلهای معلق در عرشه ی خود از خرپا ها بهره می برند که همانند پلهای تیری تاثیرات نیروی گشتاوری را کاهش می دهد ولی در پلهایی با طول زیاد، خرپای موجود در عرشه به تنهایی کافی نیست. آزمون « تونل باد»7 برای سنجش میزان مقاومت پل در برابر جنبش های چرخشی بر روی مدل آزمایش می شود. ایجاد خرپاهای آیرودینامیک در سازه هاو کابلهای آویزان مورب از روش هایی هستند که برای تقلیل تاثیرات نیروهای گشتاوری به خدمت گرفته می شود.
تشدید : تشدید ( ارتعاش در چیزی که توسط نیروی خارجی به وجود آمده و با ارتعاش طبیعی اصل آن چیز، هماهنگ و هم موج است) نوعی نیرویی است، افسار گسیخته که می تواند بر روی پل اثرات مخربی بگذارد. امواج تشدید کننده از میان پل به صورت امواج عبور خواهد کرد. یک نمونه مشهور از قدرت تخریب این امواج مرتعش پل «تاکوما ناروز»8 است که در سال 1940 توسط بادی با سرعت 40 مایل در ساعت (64 کیلومتر در ساعت) تخریب شد. بررسی های دقیق از محل نشان می دهد که خرپای عرشه ناکارآمد بوده ولی با این حال عامل اصلی فرو ریزی پل نبوده. در آن روز باد با سرعت به پل ضربه زده و با برخورد قائم به پل باعث ایجاد ارتعاش شده است. این باد های متوالی لرزش و ارتعاش را افزایش داده تا آنجا که این امواج توانستند پل را فرو ریزند. زمانی که یک ارتش بر روی پل رژه می رود، اغلب به سربازان گفته می شود " قدمرو" . با این کار، ریتم رژه ی آنها سبب ایجاد تشدید در پل می شود. اگر ارتش به اندازه کافی بزرگ باشد و آهنگ ارتعاشی لازم را داشته باشد در نهایت می تواند پل را فرو پاشد.به منظور مقابله با تاثیرات تشدید در یک پل، خیلی مهم است که در پل کاهندهای امواجی طراحی شود تا در این امواج تداخل ایجاد کرده و از شدت آن بکاهد. ایجاد تداخل یک روش موثر در برابر امواج مخرب می باشد. تکنیک های کاهش امواج معمولاً شامل اینرسی نیز هستند. اگر پلی، به عنوان مثال یک جاده با سطح پیوسته و یک تکه داشته باشد، یک موج قوی می تواند در امتداد پل حرکت کرده و منتقل شود. اگر جاده از تکه های مختلفی تشکیل شده باشد و صفحات آن همدیگر را همپوشانی کرده باشند آنگاه جنبش از یک بخش توسط صفحات به بخش دیگر منتقل می شود. از آنجا که آن صفحات بر روی یکدیگر قرار گرفته اند، اصطکاک نیز ایجاد می شود. این ترفند، اصطکاک کافی را برای تغییر فرکانس امواج مرتعش را تولید می کند. با تغییر فرکانس می توانیم از ورود امواج مخرب به سازه جلوگیری کنیم. تغییر بسامد به طرزی موثر دو نوع مختلف از موج را به وجود می آورد که موجب خنثی شدن یکدیگر می شوند.
آب و هوا : نیروی طبیعت به ویژه آب و هوا به گونه ایست که مبارزه با آن مشکل و حتی در برخی موارد امکان پذیر نیست. باران، یخبندان، طوفان و نمک هر کدام به تنهایی می توانند در فرو پاشی پل نقش بسزایی داشته و تحت یک مجموعه به احتمال بسیار قوی خواهند توانست پل را تخریب کنند. طراحان پل با مطالعه و بررسی شکست های گذشته حرفه ی خود را بدرستی آموخته اند. آنان آهن را به چوب عوض کردند و سپس فولاد را جایگزین آهن کردند. بعد ها از بتون بطور گسترده در پلها بهره گرفتند. هر کدام از مواد و مصالح جدید و یا تکنیک های طراحی، ثمره درسهایی است که در گذشته آموخته اند. با دانستن نیروی گشتاوری، تشدید و آیرودینامیک ( بعد از چند شکست بزرگ ) طراحی های بهتر نیز شکل گرفت.تا آنجاکه توانستند بر مسئله آب و هوا غلبه کنند. تعداد شکست های مرتبط با آب و هوا و شرایط جوی بسیار فراتر از تعداد شکست ها در زمینه طراحی بوده است. این شکست ها به ما آموخته است که همواره به دنبال راه حلبهتری باشیم.
پل ها، یکی از سازه های مهم دنیا به شمار می روند. در این مطلب، مشخصات چند پل مشهور جهان را می خوانید.
پل واسکودوگاما که از روی دهانه رود تاگوس بین ساکاوم و مونیجو در نزدیکی لیسبون، پرتقال می گذرد، با حدود 17200 متر طول، یکی از بلندترین پل های کابلی در اروپا به شمار می رود. این پل توسط آرماندو ریتو و با همکاری میشل ویرلوگو (که طراحی و ساخت پل میلاو را هم به عهده داشته است)، طراحی شده است. پل واسکودوگاما رسماً در 29 ماه مارس 1998 تنها کمی قبل از افتتاح نمایشگاه بین المللی اکسپو 98 و 500 سال پس از اکتشاف واسکودوگاما در راه اروپا به هند افتتاح گردید. این پل برای تحمل زلزله ای چهار برابر زلزله سال 1755 لیسبون که 7/8 ریشتر برآورد شده بود طراحی شده است. بلندترین دهانه آن 450 متر است و انتظار می رود 120 سال عمر کند. به خاطر طول زیادش، انحنا زمین نیز در نظر گرفته شده است تا پایه های آن بتوانند در محل صحیح خود قرار بگیرند.
پل ویکتور امانوئل II (Ponte Vittorio Emanuele II) که بر روی رود تایبر در رم، ایتالیا، ساخته شده، از انواع پل های قوسی است که در تاریخ 5 ژوئن 1911، در سالگرد اتحاد ایتالیا افتتاح گردید و به نام اولین شاه ایتالیا که با انضمام ونیز در سال 1866 و رم در سال 1870 به ایتالیا اتحاد این کشور را تکمیل نمود، نامگذاری شده است. این پل توسط انیو د روسی طراحی گردیده است. پل سنگی سه قوسی، چهار ستون – دو ستون در هر سمت - را به هم متصل می نماید و چهار مجسمه مرمر روی ستونهای قوس میانی، به نشانه اتحاد ایتالیا، آزادی، شکست ظلم و بیداد و وفاداری به قانون اساسی قرار گرفته اند. این پل توسعه طبیعی معماری کرسو ویتورو در رم می باشد.
پل لاویولت (The Pont Laviolette) به افتخار موسس شهر تریوس-ریویرس - سیور د لاویولت - نامگذاری شده است. این پل یک پل ماشین رو با قوس کانتیلور (طره ای) است که بر روی رودخانه سنت لارنس بین تریوس-ریویرس در کبک، کانادا و بکن کور در کبک ساخته شده است. پل پونت لاویولت که در تاریخ 20 دسامبر 1967 افتتاح گردید، تنها پلی است که بر روی رودخانه بین مونت رئال و شهر کبک قرار دارد و بنابراین ارتباط مهمی را بین سواحل شمالی و جنوبی رودخانه فراهم می سازد. طول کل آن 2707 متر و بزرگترین دهانه آن 335 متر می باشد. پل فلزی مذکور دچار خوردگی نمی شود زیرا در فولاد بکار رفته در آن از عنصر نیوبیوم استفاده شده است.
پل سنگی پونت د پیر پلی است قوسی، سنگی و ماشین رو، که روی رودخانه گارون در بوردو فرانسه قرار دارد. این پل بین سالهای 1819 و 1822 توسط کلود د شامپ و با همکاری جین-بپتیست بیلادل طراحی و ساخته شد. پل مذکور به دستور ناپلئون – در سال 1810 – و به منظور تسهیل رفت و آمد ارتشش از رودخانه بوردو در طول جنگ با اسپانیا، پرتقال و انگلیس ساخته شد. در سال 1811 مهندس کلود د شامپ وارد بوردو شد اما تا سال 1812 به عنوان مدیر پروژه ساخت پل معرفی نگردید. پروژه در سال 1814 با سقوط امپراطوری فرانسه و کناره گیری ناپلئون از قدرت، متوقف و تا 5 سال بعد، اجرای آن از سر گرفته نشد. پونت د پیر 487 متر طول دارد و دارای 17 دهانه است.
پل گلن کانیون در تقارن با سد گلن کانیون که بر روی رودخانه کلرادو و بر دهانه دریاچه پاول در نزدیکی پیج در آریزونا ساخته شده، برای ایجاد دسترسی ماشینی به هر دو ساحل رودخانه و تسهیل رفت و آمد کارکنان سد بین سالهای 1957 تا 1959 بنا گردید. این پل که توسط شرکت کیویت-جادسون پاسیفیک مورفی ساخته شد، در زمان بهره برداری در 9 فوریه 1959 بلندترین پل قوسی فلزی در جهان بود. طول عرشه پل مذکور 4/387 متر، دهانه قوس آن 313.3 متر، ارتفاع عمودی قوس آن 3/50 متر بوده و 213 متر از سطح رودخانه ارتفاع دارد.
پل کوئینز بورو – یا پل خیابان پنجاه و نهم – یک پل دو طبقه طره ای (کانتیلور) است که از روی رودخانه شرقی نیویورک سیتی می گذرد و منهتن را به دهکده کوئینز در لانگ آیلند سیتی را به هم متصل می کند. این پل همچنین از روی جزیره روزولت می گذرد. از سال 1838 پیشنهادات زیادی جهت ساخت پل برای اتصال منهتن به لانگ آیلند سیتی در دهکده کوئینز ارائه شد اما تا زمانی که اداره پل ها در این شهر تاسیس نشد، هیچکدام از طرحها مورد قبول واقع نشدند. پل فوق الذکر که در تاریخ 30 مارس 1909 افتتاح گردید – و در ابتدا به خاطر نام اولیه جزیره روزولت به نام پل جزیره بلک ول خوانده می شد – 08/1135 متر طول دارد و بزرگترین پل طره ای در جهان شناخته شده است.
پل اوناروتو پل معلق ماشین روئی است که کوبه را به ناروتو، توکوشیما در ژاپن متصل می سازد. پل مذکور که توسط هونشو-شیکوکو طراحی و در سال 1985 ساخته شده است، دارای دهانه اصلی به عرض 876 متر می باشد و اگرچه یکی از بزرگترین پل های جهان است، در مقابل پل آکاشی-کیاکو که بر روی همین مسیر ساخته شده، بسیار کوچک به نظر می رسد. عرشه اصلی این پل برای رفت و آمد اتومبیل ها و عرشه پائینی برای حرکت قطار در نظر گرفته شده بود اما راه قطار رو هرگز به اتمام نرسید.
پل هرناندو د سوتو که در سال 1972 مورد بهره برداری قرار گرفت، یکی از دو پلی است که از روی رودخانه می سی سی پی در ممفیس، تنسی می گذرد. این پل قوسی فلزی ماشین رو، یک راه ارتباطی مهم است که 40 راه بین ایالتی را بر روی می سی سی پی به هم متصل می سازد. از آنجا که پل مذکور در گوشه جنوب شرقی منطقه زلزله خیز نیو مادرید – که یک منطقه زلزله خیز با ریسک بالا می باشد - قرار دارد، مقاوم سازی آن در برابر زلزله، به عنوان یکی از اولویتهای مهم در دستور کار اداره کل راههای فدرال آمریکا، اداره ترابری تنسی و اداره ترابری آرکانزاس قرار گرفت و در سال 2003 نیروهای مشترکی بکار گرفته شدند تا طرح بهنگام زلزله ای این پل را تهیه نمایند. این طرح عبارت بود از تعویض تکیه گاههای موجود با تکیه گاههای غلتکی، مقاوم سازی شالوده ها و ستونها، بزرگتر کردن سر ستونها، اصلاح دیواره جان، تعویض یا مقاوم سازی بادبندهای جانبی، مقاوم سازی قابهای متقاطع، مقاوم سازی خرپاها و جابجائی درزهای موجود با درزهای انبساطی مفصل گردان مدولی.
پل دیترویت علیا که از رودخانه کویاهوگا گذشته و پائین شهر کلولند در اوهایو را به گوشه غربی شهر متصل می نماید، در زمان افتتاحش در سال 1918 بزرگترین پل دو طبقه بتنی در دنیا بود. این پل دارای دهانهای به عرض 5/948 متر در دو طبقه است برای اصلاح ترافیک شهری در طبقه بالا و تراموای شهری در طبقه پائین و همینطور ایجاد پیاده روهای عریض طراحی گردید. بعد ها، طرح تعریض خیابان باعث کاهش عرض پیاده رو ها گردید اما در سال 2003 کمیته برنامه ریزی شهر کلولند تصمیم گرفت یکی از لاین های پل را تبدیل به یک پارک معلق نماید که در آن گردشگاههای پیاده، صندلی های دارای سر پناه و لاین های مخصوص دوچرخه سوار پیش بینی شده بود. تیم طراحی تشکیل شده بود از تیم معماری شهری، پارسونز برینکرهوف و کمیته هنرهای همگانی.
پل فورت پیت که از رودخانه مونونگاهلا می گذرد و در تقارن با تونل فورت پیت ساخته شده است، دروازه پیتز بورگ نام گرفته است. پل مذکور از نوع قوسی فلزی بوده و 9/367 متر طول دارد و طول دهانه اصلی آن 6/228 متر می باشد. این پل که در تاریخ 19 ژوئن 1959 به بهره برداری رسید، توسط جورج اس ریچاردسون طراحی و ساخته شده است. پل و تونل اخیراً توسط گروهی از کارشناسان انتخابی توسط HDR مورد بازسازی و ترمیم قرار گرفت و این عملیات در سال 2003 به پایان رسید. یکی از مهم ترین اجزاء بازسازی پل، الحاق حصار جدید پنسیلوانیا بود. حصاری باز تر که امکان دید وسیع تر و جالب تری را به افرادی که از روی پل عبور می کنند، می دهد.