پارس عمران

مرکز آموزش مهندسی عمران و معماری

پارس عمران

مرکز آموزش مهندسی عمران و معماری

معرفی روش های حفاظت از گودبرداری

یکی از مهمترین مشکلات و دغدغه های موجود در رشته مهندسی عمران، احداث سازه ها، حفاظت از گودبرداری و ساختمان های موجود در مجاورت آن می باشد.

یکی از مهمترین مشکلات و دغدغه های موجود در رشته مهندسی عمران، احداث سازه ها، حفاظت از گودبرداری و ساختمان های موجود در مجاورت آن می باشد و در صورت عدم رعایت روش های مناسب به منظور حفاظت گودها و همچنین شیب های در حال احداث، منجر به خسارت جبران ناپذیری خواهد گردید و مخاطرات بوجود آمده ناشی از نشست های احتمالی و تقلیل ظرفیت باربری و تغییر مکان های جانبی موجب ایجاد ترک در سازه های مجاور گود خواهد شد.

به منظور جلوگیری از موارد ذکر شده لازمست از قبل از شروع عملیات گودبرداری از روش های نگهداری و مهار بندی جانبی استفاده شود تا در محیطی پایدار و ایمن بتوان عملیات را ادامه داد. در این راستا سیستم های حفاظت جانبی بطور کلی شامل موار زیر تقسیم بندی می شوند:

جداره های مهاربندی شده توسط المان های افقی و مایل (Braced wall using wale struts)
جداره های مهاربندی شده توسط المان های کششی (Soldier beam& lagging)
جداره های مهاربندی شده توسط سپر کوبی (Braced sheet pile)
جداره های مهاربندی شده توسط شمع های درجا (Bored pile walls)
جداره های مهار بندی شده توسط دیوار دیافراگمی (Diaphragm walls-Slurry wall)
جداره های مهاربندی شده توسط نیلینگ (Soil nailing)
 
 
ادامه مطلب ...

رده بندی بزرگ‌ترین پـل‌های دنیا

یکنام پل: آکاشی کایکو
محل: کوب- ناروتو، ژاپن
سال تکمیل: 1998
طول: 1991 متر (6529پا)
این پل بیش از صدها متر (یا 23درصد) طولانی‌تر از پل رکورددار قبلی یعنی پل‌گریت بلت دانمارک است. این پل جایگزین مسیرهایی شده است که کوب را به لوایا متصل می‌کرد. پهنای خطوط کشتیرانی بین‌المللی آکاشی استریت ایجاب کرد که پهنای این پل حداقل 1500متر باشد.
دونام پل: گریت‌بلت
محل:‌ کورسور، دانمارک
سال تکمیل:
1998 طول: 1624متر (5328پا)
پس از 100سال کشتیرانی بین جزایر زلاند و فونن سرانجام این سازه عظیم در سال 1998 به مرحله تکمیل رسید. این پل که بزرگ‌ترین سازه در تاریخ دانمارک است، توانسته است مسافرت‌های دریایی بسیار دشوار و طولانی را به یک مسیر 10دقیقه‌ای رانندگی کاهش دهد.
سهنام پل: رانیانگ ساوث
محل: چین
سال تکمیل:
2005 طول: 1490 متر (4888 پا)
پل رانیانگ ساوث سازه مرکزی یک پل پهن‌تر و مجتمع جاده‌ای است که از رودخانه یانگ‌تسه در استان جیانگسوی چین می‌گذرد. ساخت این پل آنقدر سریع بود که گفته می‌شود برای آن تنها نیمی از زمان ساخت پل آکاشی کایکیو صرف شد.
چهارنام پل: هامبر
محل: کینگستون- آپون هول، انگلستان
سال تکمیل:
1981 طول: 1410 متر (4626 پا)
طول پل‌ هامبر در مسیر خور هامبر که توسط رودخانه‌های ترنت و اوسه تشکیل شده است، امتداد می‌یابد. پل‌هامبر به مدت 17 سال رکوددار بزرگترین پل جهان بوده است تا اینکه پل گریت بلت در دانمارک تکمیل شد و از آن پیشی گرفت.
پنجنام پل: جیانگین
محل: جیانگین، چین
سال تکمیل: 1999
طول: 1385 متر (4543 پا)
پل جیانگین از رودخانه یانگ‌تسه عبور می‌کند تا جیانگین را به جینگ‌جیانگ متصل کند. انتظار می‌رفت در اصل تکمیل این سازه در پنجاهمین سالگرد انقلاب چین در سال 1997 به وقوع بپیوندد اما با دو سال تاخیر این پل تکمیل شد. با وجود این از سال 1999 تا 2005 این پل بزرگ‌ترین پل کشور بود تا اینکه پل رانیانگ از آن پیشی گرفت.
ششنام پل: تسینگ ما
محل: هنگ‌کنگ، چین
سال تکمیل: 1997
طول: 1377 متر (4518 پا)
پل تسینگ ما به خاطر نام جزایر هنگ‌کنگ که تسینگ‌ایی و ماوان نام دارند، به این نام خوانده شده است. ادعای اصلی این پل برای شهرتش این است که طولانی‌ترین مسیر ریلی را در جهان به خود اختصاص داده است. این پل پنج مسیر برای عبور کامیون‌ها و خودروها دارد که دو تا از آنها برای امر اورژانس نگهداشته شده است.
هفتنام پل: ورازانو نروز
محل: نیویورک سیتی، ایالات متحده آمریکا
سال تکمیل: 1964
طول: 1298متر (4260پا)
این پل رویایی روی بندرگاه نیویورک ساخته شده است و جزیره استیتن را به بروکلین متصل می‌کند. این پل مسیر اصلی عبور کامیون‌هایی است که نیویورک را برای انتقال کالاها به نیوجرسی ترک می‌کنند. این پل به مدت 17سال رکورددار بزرگ‌ترین پل جهان بود تا اینکه پل هامبر در انگلستان در سال 1981 تاسیس شد.
هشت نام پل: گلدن گیت
محل: سان فرانسیسکو، ایالات متحده
سال تکمیل: 1937
طول: 1280متر (4200پا)
پل گلدن گیت که هفت دهه پیش توانست عنوان بزرگ‌ترین پل جهان را به خود اختصاص دهد هنوز یکی از ده پل بزرگ جهان است. این پل به عنوان دروازه‌ای به شهرهای خلیج غربی سانفرانسیسکو و اوکلند محسوب می‌شود و هنوز یکی از زیباترین پل‌های جهان به شمار می‌رود.
نهنام پل: هوگا کاستنبرون
محل: کرامفورس سوئد
سال تکمیل: 1997
طول: 1210متر (3970پا)
معنای نام این پل در زبان سوئدی «پل بلند خلیجی» است. این پل که در امتداد رودخانه آنگرمانالون کشیده شده است در حدود 600کیلومتری شمال استکهلم واقع است. طراحی این پل از روی پل گلدن گیت الگوبرداری شده است.
دهنام پل: مکیناک
محل: مکیناو سیتی، میشیگان ایالات متحده
سال تکمیل: 1957
طول: 1158متر (3800پا)
پل مکیناک که بیشتر به نام «بیگ مک» مشهور است، بخش‌های بالایی و پایینی میشیگان را به هم متصل می‌کند. این به معنای آن است که بخش عمده‌ای از حمل‌ونقل کالاهای راست بلت را بر عهده دارد. این پل توسط طراح مشهور جهان دیوید استینمن طراحی شده است.

 پل‌های معلق باعث می‌شوند شهرها به روند حیات خود ادامه دهند. شاهد این موضوع هم سازه‌های اولیه‌ای است که بیش از 2000 سال پیش برای تسریع زندگی و تجارت بر روی آنها ساخته شد.
  بنابراین جای تعجب نیست که رشد اقتصادی شدید چین مدرن در دهه گذشته همزمان شده است با ساخت سه پل از بزرگ‌ترین پل‌های جهان در این کشور. این پل‌ها به کشور کمک کرده است فاصله بین اقتصادهای عمده جهان را بپیماید.
  پل رانیانگ ساوث به طول 1490 متر (4888 پا) دو سال پیش تکمیل شد. این پل از بزرگ‌ترین رودخانه آسیا یعنی یانگ‌تسه عبور می‌کند و آخرین تلاش چین برای تسریع عبور مردم و محصولات از این آب است.
  پل جیانگین واقع در جیانگین چین هم از رودخانه یانگ‌تسه عبور می‌کند و طول آن بالغ بر 1385 متر (4543 پا) است و شهرهای جیانگین و جینگ‌جیانگ را به هم متصل می‌کند.
در اصل انتظار می‌رفت تکمیل این پل با پنجاهمین سالگرد انقلاب چین در سال 1997 همزمان شود. اگرچه این اتفاق با دو سال تاخیر روی داده اما هنوز افتخار بزرگ‌ترین پل کشور را از سال 1999 تا 2005 برای چین به بار آورد تا زمانی که پل رانیانگ ساوث از آن پیشی گرفت.
 پل تسینگ ما که در سال 1997 در هنگ‌کنگ تکمیل شد، 1377 متر (4518 پا) طول دارد و به خاطر جزایر هنگ‌کنگ که تسینگ ایی‌ما وان نام دارند، این نام بر آن گذاشته شده است. اما ادعای اصلی این پل برای شهرتش این است که از طولانی‌ترین خط ریلی جهان برخوردار است.
 این پل پنج مسیر خودرو و کامیون رو دارد که دو تا از آنها برای امور اورژانس حفظ شده است.
 اما پادشاه پل‌های معلق جهان پل 1991 متری (6529 پایی) آکاشی کایکو در شهر کوب ناروتوی ژاپن است. این پل بیش از 23درصد از رکورددار قبلی طولانی‌تر است و شهر کوب را به لوایا متصل می‌کند. پهنای خط کشتیرانی بین‌المللی آکاشی استریت ایجاب می‌کرد که پهنای پل آکاشی کایکو 1500متر باشد پل بزرگ دانمارک یعنی «گریت بلت» با 1624متر طول (5328پا) رتبه دوم را به خود اختصاص داده است. این پل بین جزایر زلاندو فانن از سال 1998 ارتباط برقرار کرده است. این پروژه که بزرگ‌ترین پروژه عمرانی در تاریخ دانمارک به شمار می‌رود، توانسته است زمان یک مسافرت طولانی و دشوار را به 10دقیقه رانندگی کاهش دهد.  تاریخ اولین پل‌های معلق جهان به سال 206 قبل از میلاد مسیح برمی‌گردد، یعنی زمانی که چینی‌ها از ساقه درخت مو برای حمل بار آب استفاده می‌کردند.  پس از آن ساقه‌های گیاه بامبو جایگزین ساقه‌های مو شد. طی اواخر دهه 1800میلادی مدل جدیدی از پل‌های معلق در آمریکا و انگلستان ساخته شد.  مهندسی به نام جان آگوستوس رابلینگ، مدلی را خلق کرد که هنوز مورد استفاده قرار می‌گیرد. سازه معروف او یعنی پل بروکلین واقع در نیویورک به نماد پل‌های معلق تبدیل شد که طول آن 486متر بود (1595پا). پل بروکلین که در سال 1883 تکمیل شد، اولین پلی بود که در آن از کابل‌های فولادی استفاده شد. سرانجام کابل‌های فولادی به عنوان استانداری برای پل‌های معلق شناخته شد. امروزه در پل‌ها ثبات آنها از جهت‌های مختلف در برابر بادهای شدید و سایر عوامل جوی از اهمیت بسزایی برخوردار است.   تکنولوژی به کار رفته در پل‌ها لاجرم به نیازی برای جابه‌جایی سریع‌تر کالاها تبدیل شده است.به ویژه آنکه تقاضا برای صرفه‌جویی در مخارج باعث شد که از انتقال کالاها از کامیون یا قطار به قایق یا کشتی و دوباره بارگیری آنها به وسایط نقلیه دیگر اجتناب شود. ارائه خدمات آنی بدون سرمایه‌گذاری در زیرساختارها میسر نیست.
البته پل‌ها جنبه دیگری را هم به نمایش می‌گذارند و آن افتخار و تصویر واقعی برای شهرها و کشورها است.   ارزش اقتصادی یک پل در حمل‌ونقل مستقیم تلفیق می‌شود با ارائه نمادی از شکوه و افتخاری که یک شهر را به تصویر می‌کشد. هیچ چیزی در مورد «قدرت محض» جای یک پل مهم را که از خطوط هوایی شهر دیده شود، نمی‌گیرد. چین به نوبه خود هنوز ساخت‌وسازهای خود را به پایان نرسانده است. یک جفت پل معلق هم‌اکنون در دست ساخت است که یکی 1650متر و دیگری 1280متر طول دارد که هنگام تکمیل هر دوی آنها در زمره ده پل بزرگ جهان قرار خواهند گرفت.

سد سه دره چین

http://www.export.gov.il/Eng/_Uploads/3575dum.jpg
سد سه دره، بزرگترین سد کنونی جهان است. هرچند شنیدن نام چین به عنوان محل احداث این سد به دلیل پهناور بودن و داشتن بیشترین جمعیت جهان چندان تعجب‌آور نیست، اما بررسی مقایسه‌ای بعضی از مشخصات این سد و نیروگاهش با آنچه که درخصوص سایر سدها و نیروگاه‌‌ها شنیده‌ایم و همچنین دقت در بعضی از اطلاعات جانبی مربوط به چین واقعاً باعث شگفتی می‌شود.
کشور چین با جمعیت 1.2 میلیارد نفر و با 32 ایالت خودمختار و 9.6 میلیون کیلومتر مربع مساحت به قدری پهناور است که برای اداره آن باید به اتکای نیروهای انسانی کارآمد دست به کارهای بزرگ زد. چین در حال حاضر 25 هزار مهندس ارشد و کارشناس در زمینه برنامه‌ریزی آب برای سدها و نیروگاه‌های آبی دارد و 270 هزار نفر در 16 دفتر و محل ساخت این نیروگاه‌ها مشغول به کار هستند. حجم بارش سالانه چین در حدود 6000 میلیارد مترمکعب (حدود 15 برابر ایران است) و در شرایطی که در این کشور در سال 1950 فقط 8 سد کوچک (با ارتفاع کمتر از 15 متر) و 5 سد بزرگ مرتفع‌تر از 15 متر) وجود داشت. طی یک دوره 50 ساله و در شرایط محاصره فنی از سوی کشورهای صاحب تجربه، بیش از 90000 در سد از انواع مختلف ساخته شده که 23000 مورد آن جزو سدهای بزرگ با ارتفاع بیشتر از 15 متر (بیش از 50 درصد سدهای بزرگ جهان) است و 380 سد آن با حجم مخزن بیش از 100 میلیون مترمکعب جزو سدهای خیلی بزرگ محسوب می‌شوند.

رودخانه یانگ تسه ( Yangtze river) که سد سه دره بر روی آن ساخته می‌شود، با 6300 کیلومتر طول (حدود 3 برابر فاصله ارومیه تا زاهدان) و حجم آورد سالانه 950 میلیارد مترمکعب (حدود 7 برابر کل آورد همه رودخانه‌های ایران که 135 میلیارد مترمکعب در سال است)، یکی از بزرگترین رودخانه‌های جهان است که به لحاظ سیل‌های مخرب در رتبه اول جهان قرار می‌گیرد. برای مثال سیل سال 1998 این رودخانه به کشته شدن بیش از 3000 نفر، آواره شدن 8/13 میلیون نفر، تخریب میلیون‌ها مسکن و از بین رفتن 8/4 میلیون هکتار از زمین‌های کشاورزی منجر شد.

عملیات احداث سد سه دره با چهار هدف اصلی : 1- ذخیره سازی آب کشاورزی، 2- کنترل سیلاب، 3- تولید برق و 4- گسترش کشتیرانی و حمل و نقل آبی و با هدف جانبی جهانگردی و جلب توریست از سال 1992 آغاز شد و ساخت آن به قدری مهم بود که به سرعت به عنوان سمبل توسعه چین مورد توجه قرار گرفت.
حجم ذخیره سازی این سد 36.3 میلیارد مترمکعب (حدود 200 برابر مخزن سد کرج و بیشتر از حجم ذخیره آب تمام سدهای موجود در ایران) می‌باشد که بزرگترین مخزن در بین سدهای جهان  است. احداث این سد با هزینه 22 میلیارد دلار (حدود 25 برابر هزینه احداث سد کرخه بزرگترین سد ایران و معادل درآمد یک سال فروش نفت ایران) صورت گرفته که از این بین فقط حدود 5 میلیارد دلار برای جابه‌جایی محل زندگی و تملیک اراضی بیش از یک میلیون نفر از ساکنین اطراف سد که محل سکونت آنها در دریاچه سد فرو می‌رود، هزینه شده است.

در زمینه تولید برق، رکورد شکنی این سد قابل توجه است. نیروگاه‌های این سد دارای ظرفیت 18200 مگاوات هستند (ظرفیت کلی تولید برق انواع نیروگاه‌های ساخته شده فعلی در ایران 30000 مگاوات، برق تولیدی کل سدها 4000 مگاوات و بیشترین ظرفیت یک نیروگاه برق آبی در کشور 2000 مگاوات است. این نیروگاه با تولید متوسط سالانه حدود 85 میلیارد کیلووات ساعت، نیاز بخش زیادی از مرکز و شرق چین به انرژی الکتریکی را تأمین خواهد کرد و به این طریق از آلودگی ناشی از سوختن حدود 45 میلیون تن زغال سنگ جلوگیری به عمل می آورد. در ضمن امکان افزایش ظرفیت این نیروگاه تا 22400 مگاوات برای طرح‌های توسعه در آینده پیش‌بینی شده است.

با آبگیری کامل این سد، دریاچه‌ای به طول 660 کیلومتر (بیش از 15 برابر فاصله تهران – کرج) و عرض حداقل یک کیلومتر در انتهای دریاچه ایجاد می‌شود که باعث توسعه خط حمل و نقل آبی و کشتیرانی و افزایش ظرفیت حمل بار در رودخانه یانگ‌تسه از 10 میلیون تن به 50 میلیون تن خواهد شد. برای توجیه‌پذیری احداث این سد به رونق پرورش ماهی و همچنین زمینه‌های جهانگردی نیز توجه ویژه‌ای مبذول شده است، به نحوی که طی سال‌های اخیر دیدن محل احداث سد سه‌دره به یکی از برنامه‌های ثابت تورهای مسافرتی کشور چین تبدیل شده است و از هر جهانگرد برای تهیه بلیط ورودی 70 یوان معادل 7 هزار تومان دریافت می‌شود.
احداث سد سه‌دره که به علت واقع شدن در محدوده سه‌دره نزدیک به هم، به این اسم نامگذاری شده، دارای سه بخش اصلی «بدنه سد»، «سرریز» و «سیستم انتقال و بالابری کشتی‌ها» است و 17 سال به طول انجامیده است. این سد از نوع بتنی وزنی با طول تاج 2310 و ارتفاع 185 متر می‌باشد و سازه سرریز آن که در بخش میانی واقع شده دارای 483 متر طول با 23 خروجی در کف و 22 دریچه فوقانی است و توان عبور دادن دبی معادل 102500 مترمکعب در ثانیه را داراست. نیروگاه این سد در مرحله نخست شامل 26 واحد 700 مگاواتی می‌باشد که 14 واحد آن به صورت فضای باز در ساحل چپ و 12 واحد آن به صورت زیرزمینی در ساحل راست در دست ساخت است. برای طرح توسعه نیروگاهی این سد نیز احداث 6 واحد 700 مگاواتی دیگر به صورت زیرزمینی در ساحل راست پیش‌بینی شده است..

            دوره احداث این سد به سه فاز اجرایی تقسیم شده است که در فاز اول که از سال 1992 تا 1997 به طول انجامید فرازبند، کالورت انحراف آب، مراحل نخست تأسیسات بالابری کشتی‌ها و راه‌های دسترسی گوناگون تکمیل شدند. در فاز دوم، ساخت بدنه اصلی سد، نیروگاه‌ها، سرریز و تکمیل تأسیسات بالابر کشتی‌ها در حد فاصل سالهای 1997 تا 2003 برنامه‌ریزی شد که با تکمیل بخش عمده‌ای از آن عملیات آبگیری در اول ژوئن 2003 آغاز شد. نکته جالب این که فقط با سپری شدن 12 روز، آبی به حجم 4/12 میلیارد مترمکعب با ارتفاع 135 متر در دریاچه این سد ذخیره شد. این حجم آب، امکان شروع عملیات کشتیرانی مورد نظر را فراهم کرده و تراز آن برای شروع به کار نیروگاه‌های تکمیل شده کافی می‌باشد. بر این اساس 2 واحد 700 مگاواتی جناح چپ و کل نیروگاه‌ها در سال 2009 که عملاً انتهای فاز سوم دوره اجرا و تاریخ پایان عملیات احداث این سد است، کار خود را شروع کردند. در ساخت این سد 20 هزار نفر کارگر، 350 نفر مهندس و 9 شرکت برنامه‌ریزی و طراحی به فعالیت کرده اند . مسلماً احداث چنین سد بزرگ و بی‌نظیری در همه سطوح مدیریت، طراحی و اجرا حاوی نکات آموزنده و فراوانی است که می‌تواند مورد تحقیق و توجه فنی متخصصین مربوطه قرار گیرد.

بر اساس آخرین برآوردها هزینه اجرای آن حدود 3 میلیارد دلار کمتر از بودجه مصوب و پیش‌بینی شده می باشد.

شناخت رفتار سازه‌ پل و برآورد نیروهای وارد بر آن

‌مقدمه
در سال‌های اخیر شناخت از رفتار سازه‌ها و برآورد نیروهای وارد بر آنها به خصوص در هنگام زلزله از پیشرفت قابل ملاحظه ای برخوردار بوده است. جامعه مهندسی کشور ما نیز در بخش مشاوره (طراحی سازه ها) از این خوان دانش به مدد حضور آیین نامه‌های طراحی به روز و ابزارهای قدرتمند نرم‌افزاری وارداتی،  بهره‌مند شده است. این موضوع در مراحل اول و دوم مطالعات طراحی به خوبی رخنمون داشته اما در  اجرا متاسفانه فاصله قابل توجهی میان دانش نیروهای بخش طراحی با دانش نیروهای فنی دستگاه های نظارتی و پیمانکاران به وجود آمده که خود عامل مهمی در برآورده نشدن کیفیت مناسب در هنگام اجرای سازه‌ها شده است. البته این نکته نیز دور از ذهن نماند که گاهی اوقات نیز فاصله مذکور به طور معکوس و به دلیل عدم آگاهی بخش طراحی از روش‌ها و ظرفیت‌های موجود در صنعت ساخت و ساز به طرح‌هایی با قابلیت های اجرایی پایین ختم گردیده است.

http://www.archnewsnow.com/features/images/Feature0225_03x.jpg


مقاله حاضر به چند نکته از هر دو حیطه مورد اشاره در ارتباط با طراحی و اجرای پل‌های بتن مسلح می پردازد. 

قطع پیوستگی آرماتور دورپیچ در ناحیه تشکیل مفصل خمیری در پای ستون‌های پل‌

برای استهلاک انرژی زلزله آیین نامه ها اجازه می دهند نواحی از پیش تعیین شده‌ای در سازه‌ها دچار تغییر شکل‌هاییری با حفظ سختی، مقاومت و شکل‌پذیری در چرخه های رفت و برگشتی امواج زلزله گردند. در پل‌ها این نواحی بطور معمول در زیر سازه (پایه ها) انتخاب می گردند. بطور خاص در ستون‌های بتنی پایه‌ها این تغییر شکل‌ها در پای ستون‌ها و در طول ناحیه تشکیل مفصل خمیری اتفاق می افتند. به منظور تامین شکل پذیری لازم در مناطق با خطر لرزه‌ای زیاد، آیین نامه‌ها همپوشانی overlap  آرماتورهای دور پیچ در ناحیه تشکیل مفصل خمیری  در پای ستون را ممنوع کرده‌اند. اما در شکل ذیل مشاهده می گردد که جدا از مساله همپوشانی، پیمانکار برای سهولت اجرا و به دلیل عدم آگاهی از این نکته اصولی، حتی آرماتورهای دورپیچ را هنگام اجرای فونداسیون درست در پای ستون قطع نموده است. انقطاع ایجاد شده باعث کاهش تنش‌های محصور کننده در پای ستون شده و عامل بسیار مهمی در کاهش قابل توجه شکل پذیری و ناپایداری پایه پل در هنگام زلزله خواهد بود.

 

وصله آرماتور طولی در ناحیه تشکیل مفصل خمیری در پای ستون‌های پل‌

بر اساس فلسفه مورد اشاره در قسمت قبل و مطابق مقررات آیین نامه ها وصله آرماتور طولی ستون فقط در ناحیه نیمه میانی ارتفاع ستون مجاز می باشد. لازم به توضیح است که حداقل طول وصله 60 برابر قطر آرماتور طولی بوده و باید ضوابط دورپیچی ویژه برای آن اعمال گردد. متاسفانه در شکل زیر مشاهده می گردد که وصله آرماتور دقیقاً در ناحیه غیر مجاز ستون قرار گرفته و آرماتورهای دورپیچ نیز در فونداسیون قطع شده‌اند. موضوع اخیر از مهمترین عوامل خرابی‌هاییا می باشد.


عدم تامین طول لازم برای نشیمن تیرهای بتن مسلح پیش ساخته عرشه پل‌

 

جانمایی نادرست نئوپرن در زیر تیرهای پیش ساخته عرشه پل‌

مطابق ضوابط آیین نامه ها، محور نئوپرن‌های چهارضلعی به دلیل جلوگیری از اعمال فشار غیر یکنواخت خارج از محور باید بر محور تیر منطبق بوده و اضلاع آن به موازات اضلاع تیر باشند. متاسفانه در شکل زیر مشاهده می گردد که هر دو مورد فوق در هنگام جانمایی نشیمن‌ها رعایت نشده و نئوپرن‌ها با خروج از مرکزیت قابل توجه نصب شده‌اند. این موضوع منجر به کاهش عمر مفید بهره‌برداری از نئوپرن و ایجاد تنش‌های قابل توجه در انتهای تیر می گردد.

 

عمل آوری نامناسب بتن عرشه و ایجاد ترک‌های انقباضی‌

در برخی موارد مشاهده می گردد که پیمانکاران برای عمل آوردن بتن دال عرشه از پهن نمودن گونی و مرطوب کردن آن استفاده می نمایند. در صورت وزش باد و با توجه به وجود منافذ باز در سطح گونی، در عمل رطوبت آب به سرعت تبخیر شده و در نتیجه ترک های سطحی فراوانی در سطح دال ایجاد می گردند. شکل زیر به وضوح این مساله را نشان میی مذکور باعث نفوذ مواد خورنده به سطح آرماتورهای دال با پوشش کم شده که به دنبال آن خوردگی آرماتور، پکیدن بتن اطراف آن و کاهش عمر مفید بهره‌برداری از پل به وقوع می پیوندد. به عنوان یک راه حل پیمانکاران می توانند بجای گونی یا همراه آن از نایلون های پلاستیکی استفاده نمایند به طوری که بخار آب در زیر پلاستیک محبوس شده و باعث عمل‌آوری بتن دال عرشه گردد. به علاوه عملیات بتن‌ریزی زمانی انجام شود که سرعت باد کم بوده و تابش شدید خورشید وجود ندارد. دهد.

 

اجرای نامناسب درزهای انبساط‌


اجرای نامناسب نرده های پل‌

نرده های پل ها به طور معمول دارای پایه های فولادی جعبه ای شکل در فواصل معین می باشند که توسط صفحه ستون به بتن پیاده رو اتصال می یابند. در شکل زیر مشاهده می گردد که به دلیل عدم پیش بینی فاصله مناسب بین سطح بتن نهایی و صفحه ستون به منظور گروت‌ریزی و تنظیم آن، نصب پایه دچار مشکل شده و پیمانکار مجبور شده است از صفحات پوششی پرکننده برای تامین فاصله استفاده نماید. این موضوع باعث کاهش مقاومت پایه فولادی در هنگام ضربه وسایل نقلیه می گردد.

 یکی از مسئله سازترین قسمت‌های پل‌ها در زمان بهره‌برداری، درزهای انبساط پل می باشد. هر یک از ما روزانه چندین بار ضربه وارد بر اتومبیل خود را در هنگام عبور از همین درزها تجربه می نماییم. در شکل زیر یک نمونه درز انبساط در حال اجرا نشان داده شده است. زمان اجرای درزهای انبساط بطور معمول همزمان با بتن ریزی دال می باشد، در این هنگام با توجه به دقت کم لحاظ شده در اجرای درز انبساط و همچنین عدم وجود آسفالت پوششی، رویه درز و بتن اطراف آن دارایی بلندی هایی خواهد شد که در هنگام اجرای آسفالت امکان اصلاح آنها وجود نخواهد داشت. لذا توصیه می گردد محدوده درز انبساط تا زمان اجرای آسفالت پل، بتن ریزی نشده و در هنگام اجرای آسفالت با تنظیم مناسب درز و آنگاه ریختن بتن مرحله دوم از هم تراز بودن سطح درز و آسفالت اطمینان حاصل گردد. به علاوه از اجرای درزهای فولادی با پروفیل و ورق پوششی به دلیل شکست جوش‌های اتصالی و ایجاد مشکلات فراوان احتراز شده و به جای آنها از درزهاییکی مسلح استفاده شود. پست لاست

 در پل‌های متشکل از عرشه با تیرهای بتن مسلح پیش ساخته در کشورمان استفاده از تکیه گاه نئوپرن الاستومری براییمن تیرها در محل کوله‌ها و پایه ها بسیار رایج می باشد. انتظار می رود در هنگام زلزله، تغییر مکان طولی پل به دلیل عدم وجود میرایی در این نوع نشیمنگاه‌ها قابل توجه باشد. لذا آیین نامه‌ها مقرر می‌دارند که طول نشیمن عرشه بر روییه پل از حداقل میزانی برخوردار باشد. این مهم به دلیل جلوگیری از سقوط عرشه از روی کوله و پایه به داخل دهانه می‌باشد. متاسفانه در شکل زیر مشاهده می‌گردد که طول مذکور رعایت نشده است. در حالی‌که این موضوع در هنگام تهیه نقشه های اجرایی و زمان اجرای کوله به راحتی و با تامین براکت در دیواره کوله امکان پذیر بوده است.

پل کابلی

http://eventspace.persiangig.com/image/86-4-20/Tabriz-3.jpg

تاریخچه پل کابلی

با اینکه به نظر می رسد پل های کابلی به آینده چشم دوخته اند، ایده آن ها مسیر طولانی را پیموده است. اولین طرح شناخته شده از یک پل کابلی در کتابی به نام "ماشین های نووا" - منتشر شده در سال 1595 - آورده شده ولی این ایده تا قرن حاضر که مهندسان شروع به استفاده از پل های کابلی نمودند؛ مورد استقبال واقع نشده بود. در جنگ جهانی دوم که فولاد کمیاب بود، این طرح برای بازسازی پل های بمباران شد که هنوز فوندانسیون هایشان پابرجاست، کامل بود. با اینکه از احداث پل های کابلی در آمریکا دیری نمی گذرد، واکنش ها در این مورد بسیار مثبت بوده است.

پل کابلی و نحوه عملکرد آن

یک پل کابلی نوعی، یک تیر حمال(عرشه پل) پیوسته با یک یا چند برج بنا شده بالای پایه های پل در وسط دهانه است. از این برج ها، کابل ها به صورت اریب به سمت پایین (معمولا هر دو طرف) کشیده شده و تیر حمال(عرشه پل) را نگه می دارد.

کابل های فولادی بی نهایت قوی و در عین حال بسیار انعطاف پذیر هستند. کابل ها بسیار مقرون به صرفه می باشند چون سبب ساخت سازه ای سبکتر و باریکتر شده که در عین حال قادر به پل زدن بین مصافت های بیشتری است.اگرچه تنها تعداد کمی از آن ها برای نگه داشتن کل پل قوی هستند، انعطاف پذیریشان آن ها را در مقابل نیرو هایی که به ندرت در نظر گرفته می شوند مانند باد؛ ضعیف می نماید.

برای پل های کابلی با دهانه های طولانی به خاطر تضمین ثبات و پایداری کابل ها و پل در مقابل باد، می بایست مطالعات دقیقی انجام شود. وزن سبکتر پل یک وضع نامساعد در بادهای سهمگین و یک مزیت در مقابل زلزله محسوب می شود. نشست غیر هم سطح فوندانسیون ها که به مرور زمان یا  طی یک زلزله روی می دهد، می تواند پل کابلی را دچار آسیب کند. پس باید در طراحی فوندانسیون ها دقت به عمل آورد.

ظاهر مدرن و در عین حال ساده پل کابلی آن را به یک شاخص واضح و جذاب تبدیل کرده است. خصوصیات منحصر به فرد کابل ها و به طور کلی سازه، طراحی پل را بسیار پیچیده مینماید. برای دهانه های طولانی تر، جایی که باد و نوسانات باید مورد توجه قرار گیرند؛ محاسبات بی نهایت پیچیده اند و عملا بدون کمک کامپیوتر و آنالیز کامپیوتری غیر ممکن می باشند. علاوه بر این ساخت پل کیده ای مشکل می باشد. اتصالات، برج ها، تیر های حمال و مسیر کابل ها سازه های پیچیده ای هستند که مستلزم ساخت دقیق می باشند.

 

طبقه بندی پل های کابلی

طبقه بندی واضحی برای پل های کابلی وجود ندارد. به هر حال آن ها می توانند توسط تعداد دهانه ها، برج ها و کابل ها و همچنین نوع تیر های حمال از یکدیگر تمیز داده شوند.

تنوع بسیاری در تعداد و نوع برج ها و همچنین تعداد و چینش کابل ها وجود دارد. برج های نوعی به صورت تکی، دوتایی، دروازه ای و یا حتی برج های A شکل استفاده شده اند.

 علاوه بر این چینش کابل ها به طور عمده ای متفاوت می باشند. بعضی اقسام دارای چینش تکی، چنگی(موازی)، پنکه ای(شعاعی) و ستاره ای هستند. در بعضی موارد تنها کابل های یک طرف برج به عرشه وصل می شوند و طرف دیگر روی یک فندانسیون یا وزنه برابری لنگر می اندازند.

 

مزایای و تفاوت های پل کابلی  

برای طول متوسط دهانه ها (150 تا 850 متر) پل کابلی سریعترین انتخاب مناسب برای یک پل می باشد. نتیجه یک پل مقرون به صرفه است که زیبایی آن غیر قابل انکار است. همچنین پل کابلی بهترین پل برای طول دهانه بین پلهای بازویی و معلق می باشد. در این محدوده طول دهانه، یک پل معلق مقدار بسیار بیشتری کابل نیاز خواهد داشت و این در حالی است که یک پل بازویی کامل، به طور قابل ملاحضه ای به مصالح بیشتر نیاز دارد که آن را به مقدار چشمگیری سنگین تر می نماید.

ممکن است به نظر برسد پل کابلی شبیه پل معلق است. با اینکه هر دو دارای عرشه هستند که از کابل ها آویزانند و هر دو دارای برج هستند؛ ولی این دو پل بار عرشه را به طرق بسیار متفاوتی نگه می دارند. این اختلافات در چگونگی اتصال کابل ها به برج می باشد. در پل معلق کابل ها آزادانه از این سر تا آن سر دو برج کشیده شده اند و انتقال بار به تکیه گاه های واقع در هر انتها صورت می گیرد. در پل کابلی، کابل ها در حالی که به برج ها متصلند به تنهایی بار را تحمل می کنند. در مقایسه با پل های معلق، پل کابلی به کابل کمتری نیاز دارد، می توان آن را از قطعات بتن پیش ساخته مشابه ساخت و همچنین احداث آن سریع تر است.

مهار کابلی چگونه کار می کند؟

بایستید و دستان خود را به صورت افقی در هر طرف دراز کنید. فرض کنید آن ها پل هستند و سرتان نیز برجی در وسط آن است. در این موقعیت ماهیچه های شما دستانتان را نگاه می دارد. سعی کنید یک مهار کابلی برای نگه داشتن دستانتان بسازید. یک تکه طناب به طول حدودی 150 سانتیمتر بردارید. از یک دستیار بخواهید هر یک از دو انتهای طناب را به هر یک از آرنج هایتان ببندد. سپس وسط طناب را روی سر خود قرار دهید. اینک طناب مانند یک مهار کابلی عمل می کند و آرنج هایتان را بالا نگه می دارد. از دستیارتان بخواهید تکه طناب دیگری به طول حدودی 180 سانتی متر را این بار به مچهایتان ببندد. طناب دوم را روی سرتا ن قرار دهید. حالا شما صاحب دو مهار کابلی هستید. فشردگی و فشار نیرو را در کجا احساس می کنید؟ ببینید مهار کابلی چگونه بار پل (دست هایتان) را به برج ( سر شما) منتقل می کند!

تعاریف مربوط به تونلها و ساختگاه

مشخصات و ویژگیهای تونلها و نحوه ساخت آنها در تاثیر پذیری آنها از زلزله موثر است. در اینقسمت تعاریف مربوط به تونلها بیان شده و اثر هرکدام در تاثیر پذیری تونلها بررسی می‌شود.

1- عمق تونل :

بطور کلی تونلها در مقابل زلزله، نسبت به سایر سازه‌های سطحی بسیار پایدارترند. چرا که جابجائی زمین، دامنه حرکات، شتاب و سرعت ذره‌ای زمین عموما با زیاد شدن عمق، کاهش می‌یابد (مخصوصا اگر زمین نرم باشد)؛ بطوری که در مواردی شتاب زلزله در عمق بیش از 50 متر، حدود 40 درصد کاهش بافته است. البته ذکر این نکته نیز ضروری است که اگر چه شتاب و بعضی پارامترهای دیگر در عمق کمتر از لایه سطحی است، اما مشخصاتی مثل فرکانس زلزله به منبع تولید موج بستگی دارد و تابع عمق زمین نمیباشد. البته باید به این نکته نیز توجه داشت که میزان جابجائی ناشی از گسلش در عمق بیشتر از سطح است که این موضوع در بخش جداگانه‌ای مورد بحث قرار خواهد گرفت.

2-  شکل و اندازه تونل :

همانطور که در بخش قبل اشاره شد، هر چه مقطع تونل بزرگتر باشد، حساسیت آن به زلزله بیشتر است. یکی از موارد بزرگ بودن موضعی تونلها، در تقاطعها و ایستگاههای مترو می‌باشد. همچنین وجود دو یا چند تونل در کنار هم معمولا باعث تمرکز تنشهای استاتیکی در محیط بین تونلها می‌گردد. همین حالت در هنگام گذر موج زلزله که نوعی تنش است، اتفاق می‌افتد.

3-  وضعیت لایه بندی و جنس زمین:

امواج تولید شده در حین حرکت، تحت تاثیر خواص زمین قرار می‌گیرند. امواج فشاری و برشی در سطح برخورد با لایه‌های مختلف دچار انکسار و انعکاس می‌شوند و این باعث افزایش یا کاهش دامنه نوسانها می‌گردد. از طرف دیگر، شرایط و وضعیت خاک تحت الارضی و حتی توپوگرافی یک ناحیه ممکن است عامل افزایش اساسی در شدت جنبشهای سطح زمین گردد. تقویت شتاب در انباشته‌ای نرم بزرگتر از مقدار آن در انباشته‌های سفت می‌باشد.

4- نحوه ساخت تونل:

روشهای مختلفی برای ساخت تونل (کندن تونلها) وجود دارد که بستگی به شرایط ساختگاهی و زمین ساختی روش مناسب انتخاب می‌شود. روشهایی که بیشتر معمول هستند روش حفاری شده و خاکبرداری شده است. در مورد تاثیر نحوه ساخت بر رفتار تونلها جدول زیر در HAZUS99 که توسط NIBS آمریکا ارائه شده است (جدول 4-1). نحوه ساخت تاثیر بسیار زیادی بر اثر پذیری از امواج زلزله دارد، چرا که در روش حفاری، خاک اطراف کاملا دست نخورده باقی می‌ماند و از طرف دیگر این گونه تونلها معمولا در جائی ساخته می‌شوند که عمق قرار گیری تونل زیاد باشد. ولی در تونلهای سطحی مانند تونلهای مترو، اغلب از روش خاکبرداری و پوشش استفاده می‌شود.

5- پوشش داخلی تونل (Lining):

پس از حفاری تونل در صورت نیاز از پوشش داخلی برای محافظت در مقابل ریزش استفاده می‌شود. البته مواردی نیز وجود دارد که در صورت استحکام کافی سنگها، از پوشش استفاده نمیشود، ولی در غیر این صورت امکان استفاده از شاتکریت، بتن درجا، و یا اجزای پیش ساخته وجود دارد

تاریخچه تونل سازی و سازه های زیر زمینی

احتمالا اولین تونل‌ها در عصر حجر برای توسعه خانه‌ها با انجام حفریات توسط ساکنان شروع شد . این امرنشانگر این است که آنها در تلاشهایشان جهت ایجاد حفریات به دنبال راهی برای بهبود شرایط زندگی خود بوده اند. پیش ازتمدن روم باستان ، در مصر ، یونان ، هند و خاور دور و ایتالیای شمالی ، تماما تکنیکهای تونل سازی دستی مورد استفاده قرار می‌گرفت که در اغلب آنها نیز از فرایندهای مرتبط با آتش برای حفر تونل های نظامی ، انتقال آب و مقبره‌ها کمک گرفته شده است.

در ایران نیز از چند هزار سال پیش، به منظور استفاده از آبهای زیر زمینی تونل هایی موسوم به قنات حفر شده است که طول بعضی از آنها به 70 کیلومتر و یا بیشتر نیز می‌رسد. تعداد قنات های ایران بالغ بر50000 رشته برآورده شده است. جالب توجه است که این قنات های متعدد، طویل و عمیق با وسایل بسیار ابتدایی حفر شده اند.رومی ها نیز در ساخت قنات‌ها و همچنین در حفاری تونل های راه پرکار بودند. آنها در ضمن اولین دوربینهای مهندسی اولیه را در جهت کنترل تراز وحفاری تونل ها به کار بردند.اهمیت احداث تونل ها دردوران های قدیم ، تا بدین جاست که کارشناسان کارهای احداث تونل درآن تمدن‌ها را نشانگر رشد فرهنگ و به ویژه رشد تکنیکی و توان اقتصادی آن جامعه دانسته‌اند. تمدنهای اولیه به سرعت ، به اهمیت تونل‌ها ، به عنوان راه‌های دسترسی به کانی ها و مواد طبیعی نظیر سنگ چخماق به واسطه اهمیتش برای زندگی، پی‌بردند. همچنین کاربرد آنها دامنه گسترده‌ای از طاق زدن بر روی قبرها تا انتقال آب و یا گذرگاههایی جهت رفت و آمد را شامل می شد. کاربردهای نظامی تونل‌ها ، به ویژه از جهت بالابردن توان گریز یا راههایی جهت یورش به قرارگاهها و قلعه های دشمن ، ازدیگر جنبه های مهم کاربرد تونلها در تمدن های اولیه بود.

تونل سازی همزمان با انقلاب صنعتی، به ویژه به منظور حمل و نقل ، تحرک قابل ملاحظه ای یافت. تونل سازی به گسترش و پیشرفت کانال سازی کمک کرد و این امر در توسعه صنعت به ویژه در قرون 18 و 19 میلادی در انگلستان سهم بسزایی داشت. کانال‌ها یکی از پایه های انقلاب صنعتی بودند وتوانستند در مقیاس بسیار بزرگ هزینه‌های حمل و نقل را کاهش دهند. تونل مال پاس با طول 157 متر برروی کانال دومیدی در جنوب فرانسه اولین تونلی بود که دردوره‌های مدرن در سال 1681 ساخته شد. همچنین اولین تونل ساخته شده با کاربرد حفاریو انفجار باروت بود. در انگلستان، قرن 18 نیز جیمز بریندلی از خانواده ای مزرعه دار با نظارت بر طراحی و ساخت بیش از 580 کیلومتر کانال و تعدادی تونل به عنوان پدر کانال و تونل های کانالی ملقب شد. وی در سال 1759 با ساخت یک کانال به طول 16 کیلومتر مجموعه معدن زغال دوک بریدجواتر را به شهر منچستر متصل نمود. اثر اقتصادی تکمیل این کانال نصف شدن قیمت زغال در شهر و ایجاد یک انحصار واقعی برای معدن مذکور بود.

در اوایل قرن نوزدهم به منظور عبور از قسمتهای پایین دست رودخانه تایمز هیچ سازه ای موجود نبود و 3700 عابر مجبور بودند با طی یک راه انحرافی 3 کیلو متری با قایق مسیر روترهایت بهویپنیگ را طی کنند. اقدام به ساخت یک تونل نیز به دلیل ریزشی بودن ومناسب نبودنرسوبات کف رودخانه متوقف شد. تا اینکه در حدود سال 1820 فردی بنام مارک ایرامبارد برونل از فرانسه ایده استفاده از سپر را مطرح نمود و در سال 1825 کار احداث تونل بین روترهایت و ویپنیگ را آغاز و علی رغم جاری شدن چند نوبت سیل در سال 1843 آن را باز گشایی نمود. این تونل تامس نام گرفته و اولین تونل زیر آبی بود که بدون هر گونه رودخانه انحرافی حفر شد.

در دیگر موارد تونلهای زهکشی بزرگ ، نظیر تونلی با طول 7 کیلو متر در هیل کارن انگلستان ، اهمیت زیادی در توسعه صنعت معدنکاری داشته‌اند. البته بررسی تاریخچه پیشرفت در روش ها و تکنیک ها و به عبارتی در هنر تونل سازی نشانگر این مطلب است که مانند بسیاری دیگر از علوم و فنون بیشتر رشد این هنردر قرن گذشته صورت گرفته و تا حال نیز ادامه دارد.

ویژگی های فضاهای زیرزمینی و نمونه های بارز آنهاهم اکنون در زمینه های مختلف کاربرد تونل‌ها ، مزایای متفاوت و گوناگونی را بر می شمرند. از آن جمله ویلت، استفاده فزاینده فعلی از فضاهای زیر زمینی را به دلایل زیر رو به افزایش دانسته است.

1- تفوق محیط ساختاری به معنای وجود یک حصار وساختار طبیعی فراگیر.

2- عایق سازی با سنگهای فراگیر که دارای ویژگیهای عالی عایق‌ها می باشند.

3- محدودیت کمتر دراحداث سازه های بزرگ به دلیل نیاز کمتر به استفاده از وسایل نگهداری عمده در مقایسه با احداث همان سازه بر روی سطح زمین.

4-  کمتر بودن تأثیرات منفی زیست محیطی.

از دیگر مزایای تونل ها در راههای ارتباطی می توان به :

1-  کوتاهتر شدن مسیرها و افزایش راند مان ترافیکی

2- بهبود مشخصات هندسی مسیر

3- جلوگیری از خطرات ریزش کوه و بهمن

4- ایمنی بیشتر در برابر زلزله، اشاره کرد .

مثال های متعددی می توان از نقش وتأثیر عمده تونل سازی و پروژه های بزرگ این صنعت از گذشته تا حال ذکر کرد . تونل مشهور مونت بلان دو کشور فرانسه و ایتالیا را به هم متصل میسازد. عملیات ساختمانی آن در سال 1959 آغاز گردید و حفر این تونل فاصله بین میلان وپاریس را به طول 304 کیلو متر کوتاهتر نموده است. از دیگر نمونه ها کشور فنلاند است که سازه های زیر زمینی را به صورت غارهای عظیم بدون پوشش بتنی ، به منظور انبار مواد نفتی مورد استفاده قرار داده و در حال حاضر بیش از 75 انبار نفتی در سراسر کشور فنلاند با گنجا یشی بیش از 10 میلیون متر مکعب ساخته  شده است.